Красота Оладьи Стрижки

Продуценты и их роль в экосистеме. Экологические категории организмов: продуценты, консументы, редуценты, их роль в биотическом круговороте. Пищевые цепи и трофические уровни


Круговорот биологический – явление непрерывного характера, циклического, закономерного, но не равномерного во времени и пространстве перераспределения веществ, энергии и информации в пределах экологических систем различного иерархического уровня организации – от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом, а в пределах конкретного биогеоценоза – малым кругом биотического обмена.

Академик В.И. Вернадский первым постулировал тезис о важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли. В его концепции биосфера рассматривается не просто как пространство, занятое жизнью, а как целостная функциональная система, на уровне которой реализуется неразрывная связь геологических и биологических процессов. Основные свойства жизни, обеспечивающие эту связь, - высокая химическая активность живых организмов, их подвижность и способность к самовоспроизведению и эволюции. В поддержании жизни как планетарного явления важнейшие значение имеет разнообразие ее форм, отличающихся набором потребляемых веществ и выделяемых в окружающую среду продуктов жизнедеятельности. Биологическое разнообразие – основа формирования устойчивых биогеохимических циклов вещества и энергии в биосфере Земле.

Специфическое свойство жизни – обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводят наружу. Таким образом, каждый организм или множество одинаковых организмов в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса – поддержания жизненных условий или даже их улучшения, - определяется тем, что биосферу населяют разные организмы с разным типом обмена веществ.

В простейшем виде набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, кислород, калий, фосфор, сера и т.д.).

Продуценты

Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне - общее условие жизнедеятельности всех организмов; по энергии все биологические системы - открытые) их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.

Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380-710 нм. Эго главным образом зеленые растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (сине-зеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент - бактериохлорин - и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза, - диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.

Создавая органические вещества на основе фотосинтеза, фотоавтотрофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относятся не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти сине-зеленные. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.

При всем многообразия конкретных форм продуцентов-автотрофов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотрофов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.

Консументы

Живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных организмов, живущих за счет продуктов, синтезированных фото- или хемоситетиками. Пища, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей, облигатно связанных с автотрофами организмами (консументы 1 порядка) или с другими гетеротрофами, которыми они питаются (консументы II порядка).

Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые модельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Но это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.

В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений. Живые системы - от организма до биосферы в целом - функционируют по кибернетическому принципу обратных связей.

Животные, составляющие основную часть организмов-консументов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой служит своеобразным «гарантийным Механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.

Примером такой «пространственной гарантии может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась - было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.

Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции био- массы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущении баланса биомассы смежных трофических уровней.

В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эти вещества несут в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком - как бы «отставленное во времени» завершение циклов биологического круговорота.

Редуценты

К этой экологической категории относятся организмы-гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалия, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.

Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется СО2, из организма выводятся вода, минеральные соли, аммиак и т.д. Истинными редуцентами, завершающий цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.

В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, девитрифицирующие бактерии восстанавливают азот до элементарного состояния, сулъфатредуцирующие бактерия - серу до сероводорода. Конечные продукты разложения органических веществ - диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше - до водорода; образуются также углеводороды.

Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.

Уровни организации живой материи

Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы - поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.

Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.

На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структурно-функциональными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).



Все живые организмы на нашей планете можно отнести к продуцентам, консументам или редуцентам. О чем говорят эти термины? Каковы особенности организмов, относящихся к той или иной категории? На основании чего предложена такая классификация? Об этом будет рассказано в статье. Кроме того, более подробно будет раскрыт вопрос о том, кто такие редуценты. Примеры этих организмов тоже будут приведены ниже.

Описание трофической (пищевой) цепи

Все населяющие Землю растения, животные, микроорганизмы, грибы и т. д. включены в своеобразные взаимоотношения, называемые учеными трофической цепью (или пищевой). Одни из них поедают других, благодаря чему происходит перенос энергии от одного звена воображаемой цепи к другому. Таким образом, между ними существует простая связь: «пища - потребитель пищи».

Первое звено пищевой цепи составляют так называемые продуценты, или автотрофы. К ним относится большинство растений, водоросли. У продуцентов нет предшественников, для них характерно преобразование неорганических веществ в органические, благодаря чему происходит накопление энергии, и продуценты могут быть употреблены в пищу представителями следующего звена. Их называют консументами.

Консументы могут быть 1-го, 2-го, 3-го и 4-го порядка. Консументы 1-го порядка - обычно травоядные животные, 2-го - хищники, которые употребляют в пищу и т. д.

Далее в пищевой цепи размещаются деструкторы, или редуценты - организмы, которые перерабатывают органику обратно в неорганические вещества (или простейшие органические), обеспечивая, таким образом, процесс разложения и круговорот веществ в природе. Это важнейшее звено - «санитары». Можно привести следующие примеры редуцентов: сапротрофные бактерии, актиномицеты, грибы (например, рода Penicillium).

Роль этих организмов в трудно переоценить. Благодаря им органические остатки разлагаются без следа, обретая доступную для потребления продуцентами (автотрофами) структуру и форму. Продуценты-растения, потребляя их, наращивают зеленую массу и служат пищей для животных, людей. Значительную роль в природе играют редуценты - почвообразовательные бактерии, которые разлагают растительные и животные органические останки, способствуя тем самым превращению их в перегной а его, в свою очередь, - в минеральные соли.

Отличие редуцентов от падальщиков

Некоторые ошибочно считают, что к редуцентам относятся животные и птицы, питающиеся падалью. Но это не так. Главное отличие их от детритофагов (падальщиков) заключается в том, что организмы, питающиеся падалью, производят твердые отходы в виде экскрементов. Подобные продукты жизнедеятельности отсутствуют у редуцентов. Роль их заключается в разрушении - деструкции сложных органических веществ и превращении их в более простые по структуре (мочевина) либо неорганические. Детритофагов же, производящих твердые отходы, традиционно относят к консументам.

Потери энергии при переходах от одного уровня пищевой цепи к другому

При переходе энергии от продуцентов к консументам значительная ее часть теряется (до 80-90%), чаще всего в виде тепла. Это причина, по которой длина пищевой цепи обычно ограничена 3-6 звеньями.

Основные причины потери энергии следующие:

  • Организмы двигаются и тратят энергию на клеточное дыхание, обеспечивая свою жизнедеятельность.
  • Не вся органика может быть переварена животными, и часть ее выходит в виде экскрементов.
  • Далеко не все организмы предыдущего уровня попадают в пищу представителям следующего. Значительная их часть просто погибает по разным причинам.
  • Экскременты и погибшие организмы перерабатываются редуцентами в свою энергию.

Соотношение биомассы на разных уровнях

Учитывая сказанное выше, можно сделать вывод, что для сохранения экологического равновесия количество живых организмов на предыдущем уровне должно значительно превышать таковое на следующем. Иными словами, производителей должно быть больше, чем потребителей. При этом количество хищников на последующих уровнях уменьшается, но они становятся крупнее. Этот закон получил название правила экологической пирамиды.

Как же обстоит дело с редуцентами? Смена экосистем не имеет здесь значения: редуценты в ней все равно будут присутствовать. Именно их взаимная зависимость с консументами и продуцентами обеспечивает гарантию того, что при любых катастрофических обстоятельствах биогеоценоз не будет разрушен, и утраченные связи восстановятся.

Что же касается соотношения редуцентов и остальных групп в природе, то это вопрос довольно сложный, ведь мы имеем дело с чрезвычайно маленькими организмами. Как свидетельствуют исследования, ни общая их биомасса, ни численность не могут говорить о степени их продуктивности. Измерение такой биомассы затруднено и к тому же мало информативно. Так, количество микроорганизмов в почве может оставаться одним и тем же, но в различных условиях они будут демонстрировать разную активность.

Можно говорить о том, что в продуктивных экосистемах биомасса этих микроорганизмов составляет примерно 10-100 г на квадратный метр. Если посмотреть на показатели в тундре или пустыне, то они будут намного меньше, как и активность редуцентов. Смена экосистемы в данном примере дает возможность учитывать разные условия обитания.

В заключение

В статье была кратко описана структура пищевой цепи, а также более подробно рассказано о том, кто такие редуценты (с примерами).

Интересно, что такие звенья пищевой цепи, как консументы, отсутствовали на Земле на протяжении около 2 миллиардов лет, когда экосистемы состояли только из доядерных организмов, называемых прокариотами. А вот без редуцентов их существование было бы невозможно, ведь кто-то должен превращать органические вещества, продуцируемые пусть даже простейшими микроорганизмами, снова в неорганические. Благодаря жизнедеятельности редуцентов, примеры которых были приведены в статье, в почву возвращаются вода и минеральные соли. Таким образом, круг замыкается, и организмы-продуценты (автотрофы) снова могут воспользоваться полезными веществами.


Экосистема, или экологическая система (от др.-греч. οἶκος - жилище, местопребывание и σύστημα - система) - биологическая система, состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.

В экосистеме можно выделить два компонента - биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза, - продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества, - консументы и редуценты) компоненты, формирующие трофическую структуру экосистемы.

Единственным источником первичной энергии для существования экосистемы и поддержания различных процессов в ней являются продуценты, усваивающее энергию солнца, (тепла, химических связей) в количестве 0,1 - 1 %, редко 3 - 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом.

С точки зрения структуры в экосистеме выделяют:

неорганические вещества, включающиеся в круговорот;

органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии;

климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;

продуценты - организмы, создающие первичную продукцию;

макроконсументы, или фаготрофы, - гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;

микроконсументы (сапротрофы) - гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот;

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

биофаги - организмы, поедающие других живых организмов,

сапрофаги - организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами. Причём может пройти достаточно существенный промежуток времени между отмиранием органического вещества и включением его в оборот, например, в случае соснового бревна промежуток может составить 100 и более лет.

Основные типы организмов, которые формируют живые, или биотические, компоненты экосистемы, принято подразделять по преобладающему способу питания на продуцентов, консументов и редуцентов.

Продуценты - это организмы, производящие органические соединения из неорганических. Продуценты (в большинстве своем зеленые растения) создают органические вещества в процессе фотосинтеза или хемосинтеза. Эти органические вещества используются продуцентами как источник энергии и как строительный материал для клеток и тканей организма.

Фотосинтез может быть представлен следующим образом:

Хемосинтез – преобразование неорганических соединений в питательные органические вещества в отсутствие солнечного света, за счет энергии химических реакций.

Только продуценты способны сами производить для себя пищу. Более того, они непосредственно или косвенно обеспечивают питательными элементами консументов и редуцентов.

По типу питания все продуценты являются автотрофами - сами производят органические вещества из неорганических. Консументы и редуценты по типу питания являются гетеротрофами - питаются органическим веществом, произведенным другими живыми организмами.

Консументы – организмы, получающие питательные вещества и необходимую энергию, питаясь живыми организмами - продуцентами или другими консументами.

Редуценты – организмы, получающие питательные вещества и необходимую энергию питаясь останками мертвых организмов (животных, растений).

В зависимости от источников питания консументы подразделяются на три основных класса:

Фитофаги (растительноядные) – это консументы 1-го порядка, питающиеся исключительно живыми растениями. Например, птицы едят семена, почки и листву.

Хищники (плотоядные) – консументы 2-го порядка, которые питаются исключительно растительноядными животными (фитофагами), а также консументы 3-го порядка, питающиеся только плотоядными животными.

Эврифаги (всеядные), которые могут поедать как растительную, так и животную пищу. Примерами являются свиньи, крысы, лисы, тараканы, а также человек.

Существует два основных класса редуцентов:

1. Детритофаги – напрямую потребляют мертвые организмы или органические остатки. (пример: шакалы, грифы, дождевые черви).

2. Деструкторы – разлагают мертвую органическую материю на простые неорганические соединения (процесс гниения и разложения). Примером могут служить грибы и микроскопические одноклеточные бактерии.

В числе биологических компонентов, слагающих экосистему, четко выделяют три группы организмов׃ продуценты, консументы и редуценты.

Продуценты – организмы, создающие органическое вещество из неорганических соединений (автотрофы – растения, создающие органическое вещество путем фотосинтеза, хемотрофы – некоторые организмы, создающие органику за счет химических реакций).

Редуценты – организмы, в ходе жизнедеятельности превращающие органическое вещество в неорганическое (большинство микроорганизмов, грибы).

Соотношение биомассы продуцентов, консументов и редуцентов определяет каркасную структуру экосистемы. Обычно это соотношение графически изображают как пирамиду (пирамиду масс, реже чисел, подразумевается число особей). Как правило, основная доля биомассы приходится на продуцентов, число консументов первого порядка существенно меньше, еще меньше совокупность консументов второго порядка и т.д. При переходе от одной ступени пирамиды к другой теряется от 7 до 15% энергии. Поэтому число ступеней пирамиды ограничено, обычно 5 – 7.

Важнейший компонент экосистемы – организмы – в той или иной мере определяют ее облик. При этом одни из них формируют его в большей степени, чем другие. Виды, играющие основную роль в создании биосреды в экосистеме, называются эдификаторами. Обычно это растения. Однако и животные могут играть эту роль, например, сойка, распространяющая желуди, сурки, создающие (меняющие) условия произрастания растений в степи, почвенные или глубоководные животные (в глубинах океана растения отсутствуют). Организмы, менее влияющие на создание среды и облика экосистемы, называются ассектаторами. Условия их существования определяются эдификаторами.

Существенным свойством экосистемы является время ее существования. Вообще, под системным временем (характерным собственным временем системы) подразумевают время, рассматриваемое в масштабе периода существования данной системы или происходящих в ней процессов. Например, время жизни особи, смены поколений, продолжительности существования вида организмов планеты. Для каждой из перечисленных выше систем характерны своя пространственная протяженность (объем, площадь) и масса, а также (минимальное) количество подсистем, позволяющее системе существовать и функционировать. Можно отметить, что время жизни биосферы больше, чем время существования умеренных лесов северного полушария планеты, а время существования конкретного участка леса или поляны меньше, чем лесной зоны в целом.

В ходе развития нашей планеты менялся качественно и количественно состав компонентов. Естественно, что изменялись и сами экосистемы. Способность экосистем адаптироваться к изменениям весьма важна. Экосистема представляет собой совокупность разных компонентов. В то же время ее особенности определяются не только суммой их свойств. Универсальное свойство экосистем – их эмерджентность (от англ. – возникновение, появление нового). Так, лес – не одно дерево, а множество, которое образует новое свойство. Понятно, что одно дерево или даже десяток деревьев еще не лес.

Различают циклическую (флуктуационную) и поступательную динамику экосистем (в последнем случае можно говорить о развитии). К числу циклических изменений относят различные (по времени) типы динамики. Самый простой из них – суточный (связан с изменением освещенности, фотосинтеза, активности дневных, сумеречных или ночных животных). Сезонная динамика определяется положением планеты по отношению к солнцу, что вызывает чередование весны, лета, осени и зимы. Солнечная активность определяет многолетнюю динамику экосистем (2-, 4-, 11-летние циклы и т.п.). Более сложными космическими и планетарными процессами определяются длительные циклы, протяженность которых охватывает периоды от нескольких десятилетий до миллионов лет. Для циклических изменений экосистем характерны их более или менее правильная периодичность.

Поступательная динамика экосистем обычно связана с внедрением в их состав новых видов либо сменой одних видов другими.

В конечном счете и тот и другой процесс приводят к смене биоценозов или экосистем в целом. Такие смены получили название сукцессий (от лат. сукцессио – преемственность, наследование). В случае, если сукцессия обуславливается внешними по отношению к экосистемам факторами, говорят об экзогенных сукцессиях, когда изменение возникает под действием внутренних причин – об эндогенных.

Экзогенные сукцессии могут быть вызваны изменением климата, такие процессы могут идти сто или даже тысячи лет, поэтому их называют вековыми.

В ходе эволюции жизни на Земле биологические виды преобразуются в новые формы. В таком случае можно говорить об эндогенных сукцессиях.

Если изменения вызваны деятельностью человека, говорят об антропогенных сукцессиях. Так, на месте вырубки или пожарища, уничтоживших лес (следует иметь в виду, что 98% лесных пожаров в нашей стране вызываются человеком), последовательно возникают территории, поросшие травянистыми растениями, затем появляются кустарники, кустарники в конце концов скрываются под пологом лиственных деревьев. Под пологом лиственного леса подрастают хвойные породы деревьев, которые, проникая в верхний ярус, образуют смешанный лес. Лиственные деревья короткоживущи по сравнению с хвойными, они постепенно выпадают из верхнего яруса, в результате чего в конце концов на месте гари и вырубки формируется хвойный лес.

В целом независимо от того, идет ли естественная экзо- или эндогенная сукцессия или антропогенная, общими закономерностями будут׃

– последовательное заселение живыми организмами;

– увеличение видового разнообразия живых организмов;

– постепенное обогащение почвы органическими веществами;

– возрастание плодородия почвы;

– усиление связей между различными видами или трофическими группами организмов;

– изменение числа экологических ниш;

– постепенное формирование все более сложных экосистем и биоценозов.

Более мелкие по размеру виды, особенно растительные, как правило, сменяются более крупными, интенсифицируются процессы обмена, круговорота веществ и т.д. Такие сукцессионные ряды заканчиваются слабо меняющимися экосистемами, которые называются климаксными (от греческого klimaks – лестница), коренными или узловыми. В определенных климатических условиях последовательность смен, видовой состав участвующих в них видов имеют свою специфику. При этом каждой стадии, включая климаксную, свойствен свой набор видов, который, во-первых, типичен для данного региона, во-вторых, состоит из наиболее приспособленных к конкретной стадии организмов.

Следует отметить, что развитие экосистемы продолжается и после достижения ею климаксной стадии.

Может меняться состав и численность отдельных видов, в то же время общим для климаксов является сходство видов-эдификаторов, которые в наибольшей мере определяют условия существования в экосистеме всех организмов. Поскольку в одинаковых климатических условиях набор эдификаторов предопределен, каждый ряд завершается однотипной экосистемой (моноклимаксом).

Наиболее типичные ряды в полосе южной тайги России׃

– темнохвойных лесов;

– светлохвойных лесов;

– ивово-ольшатниковых лесов;

– луговых экосистем и т.п. (3.1, 3.2).

Таблицы иллюстрируют типичные смены в каждом ряду (на примере Камского Приуралья и Верхнеленья). Таким образом, способность экосистем к сукцессионному развитию является их функциональным свойством, определяющим возможность их саморегуляции (самовосстановления). В определенной мере с этой способностью связано и другое, не менее фундаментальное, свойство экосистем – их устойчивость (стабильность).

Представление об устойчивости экосистем разрабатывалось в рамках ряда фундаментальных наук. Так, математики полагают, что математическая устойчивость выражается в том, что изучаемый процесс, проявляющийся в преобразовании некоторой величины (функции), начавшись из фиксированной области, не должен привести к выходу этой величины за пределы заранее определенной области, в общем случае не совпадающей с начальной.

Физически устойчивым является такое состояние системы, к которому она самопроизвольно возвращается, будучи выведена из него внешними силами. С физической точки зрения восстанавливается состояние наиболее вероятное – с наименьшим уровнем свободной энергии. Наглядной моделью физически устойчивой системы служит металлический шарик, скатывающийся к самому низкому участку ямки, сколько бы мы ни поднимали его на “откосы”.

Наряду с устойчивостью, в экологии широко применяется термин “гомеостазис” или “гомеостаз”, возможно, заимствованный из физиологии. Гомеостатическая система – это система, в которой стабильность важных для ее существования параметров поддерживается специальными регуляторами вопреки изменениям среды. В экологии под устойчивостью экосистемы понимают ее способность к реакциям, пропорциональным величине силы воздействия. Неустойчивость экосистемы – ее несоответственно большой отклик на относительно слабое воздействие. Таким образом, говоря об экологической устойчивости, мы подразумеваем способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних (и внутренних для глобальных экосистем) факторов.

Нередко экологическая устойчивость рассматривается как синоним стабильности, т.е. как способность экосистемы противостоять абиотическим и биотическим факторам среды, включая антропогенные воздействия.


Таблица 3.1

Ряды смен биоценозов южной тайги Верхнеленья

Коренные (климаксовые) стадии

Производные стадии

Водораздельный темнохвойный лес

Сухая гарь

Мелколиственный лес

Смешанный лес

Увлажненная гарь

Мелколиственный лес

Смешанный лес

Увлажненный водораздельный темнохвойный лес

Мелколиственный лес

Смешанный лес

Островной темнохвойный лес

Мелколиственный лес

Смешанный лес

Светлохвойный лес

Мелколиственный лес

Смешанный лес

Молодой сосняк


Коренные (климаксовые) стадии

Производные стадии

Остепненный светлохвойный лес

“Степоид”

Заросли кустарников

Молодой светлохвойный лес

Мелколиственный лес

Смешанный лес

Приречный ельник

Заросли кустарника

Мелколиственный лес

Смешанный лес

Приручьевой ельник

Заросли кустарников

Смешанный лес

Мелколиственный лес

Смешанный лес

Мелколиственный лес

Смешанный лес

Таблица 3.2

Ряды смен биоценозов южной тайги Камского Приуралья

Коренные (климаксовые *) стадии

Производные стадии

Темнохвойный лес

Вырубка травянистая

Вырубка кустарниковая

Березник

Смешанный лес

Вырубка травянистая

Вырубка кустарниковая

Молодой ельник

Светлохвойный лес

Вырубка травянистая

Вырубка кустарниковая

Березник

Смешанный лес

Вырубка травянистая

Вырубка кустарниковая

Молодой сосняк (жердняк)

Искусственные посадки сосны на месте вырубленных сосняков

Молодой сосняк

Смешанный лес

Вырубка травянистая

Материковый луг

Заросли кустарников

Березняк

Молодой сосняк

Смешанный лес

* Ряд смен хвойно-широколиственного леса не рассматривается, т.к. в Прикамье такие насаждения характерны для подзоны смешанных лесов, а не для южной тайги.

Если попытаться проанализировать механизмы, обеспечивающие устойчивость (стабильность) экосистем, то можно отметить, что они могут реализовываться на уровне собственно экосистем и на двух более низких уровнях – популяции и отдельного организма.

Можно выделить семь таких механизмов׃

1. Многие абиотические системы обладают свойством устойчивости в том смысле, что после нарушений, вызванных вмешательством каких-то внешних сил, они восстанавливают свою структуру. Примером может служить бессточное озеро, автоматически восстанавливающее нейтральный баланс своей водной массы.

Другие 6 групп механизмов сохранения устойчивости экосистем связаны с живой материей.

Уровень отдельных организмов

2. Физиологические адаптации живых существ к неблагоприятным воздействиям среды. Так, регулирование транспирации (испарения воды) позволяет растениям существовать при различных уровнях влажности воздуха и субстратов, а также при различных температурах.

3. Фенотипическая изменчивость организмов обеспечивает им во взрослом состоянии наибольшее соответствие окружающей обстановке. Так, у животных, выросших в разных условиях, варьирует длина шерсти, толщина подкожного слоя жира и т.д.

4. “Убегание” от неблагоприятных воздействий. Так, обитатели пустыни, будучи на поверхности земли, мгновенно погибли бы от перегрева, находясь же на ветке саксаула или зарываясь в грунт, они как бы « убегают » от воздействия высоких температур. От зимних морозов многие животные спасаются, впадая в спячку, и т.п.

Популяционный уровень

5. Эволюционный механизм, движущий и стабилизирующий отборы, описанные русским академиком И.И. Шмальгаузеном, позволяет популяциям противостоять длительным изменениям среды путем выработки и закрепления в потомстве соответствующих приспособлений, стабилизирующий отбор сохраняет особей со средним значением признаков. Так, на островах, открытых действию ветров, доминирует разрывающий отбор, сохраняющих особей хорошо летающих (с длинными крыльями, быстро летающие) или вообще не летающих (не летающие птицы Новой Зеландии, бескрылые осы, мухи и т.п. на других островах). Сильные порывы ветра могут погубить короткокрылых птиц, которые не успевают добраться до убежища или, наоборот, длиннокрылых, которые пытаются противостоять сильным порывам ветра (стабилизирующий отбор). Последнее было показано И.И. Шмальгаузеном на воробьях, среди которых сохраняются, как правило, особи со средней длиной крыла.

Экосистемный уровень

6. Экосистемный механизм обеспечивает замену отдельных организмов и даже целых популяций в случае их гибели в результате неблагоприятных воздействий. Это позволяет экосистеме восстановить наружную структуру, сохраняя высокий уровень использования энергетических и вещественных ресурсов. Возможность замены тем больше, чем богаче выбор наличных видов с разными экологическими особенностями. Отсюда понятно, чем объясняется обнаруженная экологами закономерность: с увеличением видового разнообразия в экосистеме повышается ее устойчивость по отношению к природным и антропогенным воздействиям.

7. Особняком стоит деятельность человеческих популяций, выражающаяся в создании искусственных средств защиты устойчивости. Сюда можно отнести не только одежду, жилище, но и орудия труда, охотничье и боевое оружие, машины и многое другое. Этот механизм, который реализуется в создании специализированных информационных систем, наук, технологий, может быть назван социальным.

Существенным моментом устойчивости экосистем является и характер воздействия на них различных факторов. Так, кратковременные воздействия слабо влияют на устойчивость, однако длительное воздействие может вызвать катастрофическое изменение экосистемы. К таким же разрушительным последствиям приводят воздействия на большое число компонентов или на значительную часть территории, занимаемую экосистемой. Можно сказать, что чем дольше длится воздействие, чем большую площадь оно захватывает, чем на большее число компонентов влияет, тем больше вероятность разрушения экосистемы.

Существуют экосистемы с различной устойчивостью. Так, тундровые и пустынные экосистемы рассматриваются как малоустойчивые, а тропические леса, максимально богатые по видовому составу, – как самые устойчивые.

Для экосистем с низкой устойчивостью характерны вспышки численности отдельных видов (в тундре в отдельные годы невероятно высока численность леммингов). Кроме того, низкоустойчивые системы легко разрушаются под влиянием внешних воздействий (перевыпаса, технических нагрузок и т.п.). Например, в тундре колеи после проезда тяжелых вездеходов могут сохраняться многие годы. К числу неустойчивых экосистем относятся и агроэкосистемы, создаваемые человеком, что объясняют обычно возделыванием одной культуры (монокультуры) или очень немногих видов растений (викоовсяное поле и т.п.).

Продуценты – организмы, создающие органическое вещество из неорганических соединений (автотрофы – растения, создающие органическое вещество путем фотосинтеза, хемотрофы – некоторые организмы, создающие органику за счет химических реакций).

Редуценты – организмы, в ходе жизнедеятельности превращающие органическое вещество в неорганическое (большинство микроорганизмов, грибы).

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительна, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.
В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена - консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например в тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, и их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Пищевые цепи и трофические уровни

Органические молекулы , синтезированные автотрофами, служат источником питания (вещества и энергии) для гетеротрофных животных. Этих животных в свою очередь поедают другие животные и таким путем происходит перенос энергии через ряд организмов, где каждый последующий питается предыдущим. Такая последовательность называется пищевой цепью, а каждое звено цепи соответствует определенному трофическому уровню (от греч. troph - еда). Первый трофический уровень всегда составляют автотрофы, называемые продуцентами (от лат. producere - производить). Второй уровень - это растительноядные (фитофаги), которых называют консументами (от лат. consumo - «пожираю») первого порядка; третий уровень (допустим, хищники) - консументы второго порядка и т. д.

В экосистеме обычно бывает 4-5 трофических уровней и редко больше 6. Частично это обусловлено тем, что на каждом из уровней часть вещества и энергии теряется (неполное поедание пищи, дыхание консументов, «естественная» гибель организмов и т. п.); такие потери отражены на рисунке и подробнее обсуждаются в соответствующей статье. Однако, судя по результатам недавних исследований, длина пищевых цепей ограничивается и другими факторами. Возможно, существенную роль играют доступность предпочитаемой пищи и территориальное поведение, снижающее плотность расселения организмов, а, значит, и численность консументов высших порядков в конкретном местообитании. По существующим оценкам, в некоторых экосистемах до 80% первичной продукции не потребляется фитофагами. Мертвый же растительный материал становится добычей организмов, питающихся детритом (детритофа-гов) или редуцентов (деструкторов). В таком случае говорят о детритных пищевых цепях. Детрит-ные пищевые цепи преобладают, например, в дождевых тропических лесах.



Продуценты

Практически все продуценты - фотоавтотрофы, т. е. зеленые растения, водоросли и некоторые прокариоты, например цианобактерии (раньше их называли сине-зелеными водорослями). Роль хемоавтотрофов в масштабах биосферы пренебрежимо мала. Микроскопические водоросли и цианобактерии, составляющие фитопланктон, являются главными продуцентами водных экосистем. Напротив, на первом трофическом уровне наземных экосистем преобладают крупные растения, например деревья в лесах, травы в саваннах, степях, на полях и т. д.

Поток энергии и круговорот веществ в типичной пищевой цепи. Обратите внимание, что между хищниками и детритофагами, а также редуцентами, возможен двусторонний обмен: детритофаги питаются мертвыми хищниками, а хищники в ряде случаев поедают живых детритофагов и редуцентов. Фитофаги - консументы первого порядка; плотоядные - консументы второго, третьего и т. д. порядков.

Консументы первого порядка

На суше основные фитофаги - насекомые, рептилии, птицы и млекопитающие. В пресной и морской воде это обычно мелкие ракообразные (дафнии, морские желуди, личинки крабов и т. д.) и двустворчатые моллюски; большинство их - фильтраторы, отцеживающие продуцентов, как описано в соответствующей статье. Вместе с простейшими многие из них входят в состав зоопланктона - совокупности микроскопических дрейфующих гетеротрофов, которые питаются фитопланктоном. Жизнь океанов и озер почти полностью зависит от планктонных организмов, составляющих фактически начало всех пищевых цепей в этих экосистемах.