Красота Оладьи Стрижки

Биологический процесс анаэробного окисления. Биологическое окисление. Супероксиддисмутазы катализируют реакцию

Биологическое окисление – это совокупность окислительно-восстановительных превращений различных веществ в живых организмах. Окислительно-восстановительными называют реакции, протекающие с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Типы процессов биологического окисления :

1)аэробное (митохондриальное) окисление предназначено для извлечения энергии питательных веществ с участием кислорода и накоплении её в виде АТФ. Аэробное окисление называется также тканевым дыханием , поскольку при его протекании ткани активно потребляют кислород.

2) анаэробное окисление – это вспомогательный способ извлечения энергии веществ без участия кислорода. Анаэробное окисление имеет большое значение при недостатке кислорода, а также при выполнении интенсивной мышечной работы.

3) микросомальное окисление предназначено для обезвреживания лекарств и ядов, а также для синтеза различных веществ: адреналина, норадреналина, меланина в коже, коллагена, жирных кислот, желчных кислот, стероидных гормонов.

4) свободнорадикальное окисление необходимо для регуляции обновления и проницаемости клеточных мембран.

Основным путём биологического окисления является митохондриальное , связанное с обеспечением организма энергией в доступной для использования форме. Источниками энергии для человека являются разнообразные органические соединения: углеводы, жиры, белки. В результате окисления питательные вещества распадаются до конечных продуктов, в основном - до СО 2 и Н 2 О (при распаде белков также образуется NH 3). Выделяемая при этом энергия накапливается в виде энергии химических связей макроэргических соединений, преимущественно – АТФ.

Макроэргическими называются органические соединения живых клеток, содержащие богатые энергией связи. При гидролизе макроэргических связей (обозначаются извилистой линией ~) высвобождается более 4 ккал/моль (20 кДж/моль). Макроэргические связи образуются в результате перераспределения энергии химических связей в процессе обмена веществ. Большинство макроэргических соединений являются ангидридами фосфорной кислоты, например, АТФ, ГТФ, УТФ и т.д. Аденозинтрифосфат (АТФ) занимает центральное место среди веществ с макроэргическими связями.

аденин – рибоза – Р ~ Р ~ Р, где Р – остаток фосфорной кислоты

АТФ находится в каждой клетке в цитоплазме, митохондриях и ядрах. Реакции биологического окисления сопровождаются переносом фосфатной группы на АДФ с образованием АТФ (этот процесс называется фосфорилированием ). Таким образом, энергия запасается в форме молекул АТФ и при необходимости используется для выполнения различных видов работы (механической, электрической, осмотической) и для осуществления процессов синтеза.

Система унификации субстратов окисления в организме человека

Непосредственное использование химической энергии, содержащейся в молекулах пищевых веществ невозможно, потому что при разрыве внутримолекулярных связей выделяется огромное количество энергии, которое может привести к повреждению клетки. Чтобы пищевые вещества, поступившие в организм, должны пройти ряд специфических превращений, в ходе которых происходит многостадийный распад сложных органических молекул на более простые. Это даёт возможность постепенного высвобождения энергии и запасания её в виде АТФ.

Процесс превращения разнообразных сложных веществ в один энергетический субстратназывается унификацией. Выделяют три этапа унификации:

1. Подготовительный этап протекаетв пищеварительном тракте, а также в цитоплазме клеток организма. Крупные молекулы распадаются на составляющие их структурные блоки: полисахариды (крахмал, гликоген) – до моносахаридов; белки – до аминокислот; жиры – до глицерина и жирных кислот. При этом выделяется небольшое количество энергии (около 1%), которая рассеивается в виде тепла.

2. Тканевые превращения начинаются в цитоплазме клеток, заканчиваются в митохондриях. Образуются ещё более простые молекулы, причём число их типов существенно уменьшается. Образующиеся продукты являются общими для путей обмена разных веществ: пируват, ацетил-коэнзимА (ацетил-КоА), α-кетоглутарат, оксалоацетат и др. Важнейшим из таких соединений является ацетил-КоА – остаток уксусной кислота, к которому макроэргической связью через серу S присоединён коэнзим А - активная форма витамина В 3 (пантотеновой кислоты). Процессы распада белков, жиров и углеводов сходятся на этапе образования ацетил-КоА, образуя в дальнейшем единый метаболический цикл. Для этого этапа характерно частичное (до 20%) освобождение энергии, часть которой аккумулируется в виде АТФ, а часть рассеивается в виде тепла.

3. Митохондриальный этап . Продукты, образовавшиеся на второй стадии, поступают в циклическую окислительную систему - цикл трикарбоновых кислот (цикл Кребса) и связанную с ним дыхательной цепи митохондрий. В цикле Кребса ацетил-КоА окисляется до СО 2 и водорода, связанного с переносчиками – НАД + ·Н 2 и ФАД·Н 2 . Водород поступает в дыхательную цепь митохондрий, где происходит его окисление кислородом до Н 2 О. Этот процесс сопровождается высвобождением примерно 80% энергии химических связей веществ, часть которой используется на образование АТФ, а часть - выделяется в виде тепла.

Углеводы

(полисахариды)

I подготовительный; высвобождается 1% энергии питательных веществ (в виде тепла);

аминокислоты

глицерин,

жирные кислоты

II тканевые превращения; 20% энергии в виде тепла и АТФ

ацетил-КоА (СН 3 -СО~SKoA)

III митохондриальный этап;

80% энергии (примерно половина - в виде АТФ, остальное - в виде тепла).

Цикл трикарбоновых кислот

Дыхательная цепь митохондрий О 2

Классификация и характеристика основных оксидоредуктаз в тканях

Важной особенностью биологического окисления является то, что оно протекает под действием определённых ферментов (оксидоредуктаз). Все необходимые ферменты для каждой стадии объединены в ансамбли, которые, как правило, фиксируются на различных клеточных мембранах. В результате слаженного действия всех ферментов химические превращения осуществляются постепенно, как на конвейере. При этом продукт реакции одной стадии является исходным соединением для следующей стадии.

Классификация оксидоредуктаз :

1. Дегидрогеназы осуществляют отщепление водорода от окисляемого субстрата:

SH 2 + A → S +AH 2

В процессах, связанных с извлечением энергии, наиболее распространённый тип реакций биологического окисления – дегидрирование , то есть отщепление от окисляемого субстрата двух атомов водорода и перенос их на окислитель. В действительности водород в живых системах находится не в виде атомов, а представляет собой сумму протона и электрона (Н + и ē), маршруты движения которых различны.

Дегидрогеназы являются сложными белками, их коферменты (небелковая часть сложного фермента) способны быть и окислителем, и восстановителем. Забирая водород от субстратов коферменты переходят в восстановленную форму. Восстановленные формы коферментов могут отдавать протоны и электроны водорода другому коферменту, который имеет более высокий окислительно-восстановительный потенциал.

1) НАД + - и НАДФ + -зависимые дегидрогеназы (коферменты - НАД + и НАДФ + - активные формы витамина РР). Присоединяют два атома водорода от окисляемого субстрата SH 2 , при этом образуется восстановленная форма - НАД + ·Н 2:

SH 2 + НАД + ↔ S + НАД + ·Н 2

2) ФАД-зависимые дегидрогеназы (коферменты - ФАД и ФМН – активные формы витамина В 2). Окислительные способности этих ферментов позволяют им принимать водород как непосредственно от окисляющегося субстрата, так и от восстановленного НАДН 2 . При этом образуются восстановленные формы ФАД·Н 2 и ФМН·Н 2 .

SH 2 + ФАД ↔ S + ФАД·Н 2

НАД + ·Н 2 + ФМН ↔ НАД + + ФМН·Н 2

3) коэнзим Q или убихинон, который может дегидрировать ФАД·Н 2 и ФМН·Н 2 и присоединять два атома водорода, превращаясь в КоQ·Н 2 (гидрохинон ):

ФМН·Н 2 + КоQ ↔ ФМН + КоQ·Н 2

2. Железосодержащие переносчики электронов геминовой природы – цитохромы b, c 1 , c, a, a 3 . Цитохромы – это ферменты, относящиеся к классу хромопротеидов (окрашенных белков). Небелковая часть цитохромов представлена гемом , содержащим железо и близким по строению к гему гемоглобина.Одна молекула цитохрома способна обратимо принимать один электрон, при этом меняется степень окисления железа:

цитохром(Fe 3+) + ē ↔ цитохром(Fe 2+)

Цитохромы a, a 3 образуют комплекс, называемый цитохромоксидазой . В отличие от других цитохромов, цитохромоксидаза способна взаимодействовать с кислородом – конечным акцептором электронов.

Все живые организмы по источникам используемой для жизнедеятельности энергии делят на автотрофы (использующие энергию солнечного света) и гетеротрофы (использующие энергию химических связей). Получение энергии в клетках гетеротрофных организмов осуществляется за счет окисления сложных органических соединений: углеводов, жиров, белков, которые организмы получают из внешней среды, т.е. в виде их химических связей животные потребляют энергию из окружающей среды. Эти вещества и являются энергетическими ресурсами клеток гетеротрофных организмов.

Выделяют три этапа извлечения энергии из них (рис. 1):

1. Расщепление полимерных молекул до мономеров. На этой стадии не происходит высвобождение биологически полезной энергии. Около 1% энергии выделяется и рассеивается в виде тепла.

2. Расщепление мономеров с образованием главных промежуточных продуктов – пирувата, ацетил-КоА. Здесь выделяется 20% энергии с запасанием ее в макроэргических связях АТФ и частичным рассеиванием в виде тепла.

3. Окисление ацетил-КоА в цикле трикарбоновых кислот до СО 2 и Н 2 О и высвобождением атомарных водородов с последующим их окислением кислородом в дыхательной цепи ферментов, сопряженным с синтезом АТФ. Здесь выделяется 80% энергии, большая часть (около 60%) которой запасается в форме АТФ.

Рис. 1. Основные этапы биологического окисления, сопряженного с фосфорилированием.

Классификация процессов биологического окисления.

Процессы биологического окисления можно разделить на два основных типа:

1.Свободное окисление – окисление, при которомвся энергия окислительной реакции выделяется исключительно в виде тепла. Эти процессы не сопряжены с синтезом АТФ, т.е. не происходит преобразовании энергии, выделяющейся при окислении в энергию макроэргических связей. Свободное окисление играет вспомогательную роль - оно служит для теплопродукции и детоксикации вредных продуктов обмена веществ.

По типу свободного окисления идут все оксигеназные реакции, все окислительные реакции, ускоряемые пероксидазами или сопровождающиеся образованием Н 2 О 2 , многие реакции, катализируемые оксидазами.

Процессы свободного окисления сосредоточены в цитозоле, в мембранах эндоплазматической сети клетки, в мембранах лизосом, пероксисом и аппарата Гольджи, на внешних мембранах митохондрий и хлоропластов, в ядерном аппарате клетки.

2. Сопряженное окисление - окисление, при которомэнергия окислительной реакции используется для синтеза АТФ. Поэтому данный вид окисления называют окислением, сопряженным с фосфорилированием АДФ. Он может осуществляться двумя способами.

Если при окислении субстрата образуется макроэргическое соединение, энергия которого используется для синтеза АТФ, то такой вид биологического окисления называют субстратным фосфорилированием или фосфорилированием на уровне субстрата или окислением, сопряженным с фосфорилированием АДФ на уровне субстрата . Примером таких реакций являются 2 реакции гликолиза: превращение 1,3-дифосфоглицериновой кислоты в 3-фосфоглицериновую кислоту и фосфоенолпирувата (ФЕП) в пируват, а также реакция цикла Кребса – гидролиз сукцинил-КоА до сукцината. Эти реакции протекают сопряжено с синтезом АТФ.



Если процессы окисления, протекающие в дыхательной цепи ферментов на внутренней мембране митохондрий, где происходит перенос протонов и электронов от окисляемого субстрата к кислороду, сопряжены с синтезом АТФ, то такой вид биологического окисления называют окислительным фосфорилированием или фосфорилированием на уровне электронно-транспортной цепи.

Схема классификации биологического окисления

Биологическое окисление

Свободное окисление Сопряженное окисление

Субстратное Окислительное

фосфорилирование фосфорилирование

В окислительном фосфорилировании используются реакции дегидрогенирования окисляемого субстрата с последующим переносом атомов водорода (протонов и электронов) на кислород при участии оксидоредуктаз. Перенос водорода на кислород происходит через ряд окислительно-восстановительных систем, которые располагаются в строгой последовательности - в соответствии со значением их потенциала. Такая последовательность реакций, связанных с переносом водорода на кислород при участии специфических переносчиков электронов, называется дыхательной (или электронно-транспортной) цепью . У животных и человека она составлена из четырех основных типов переносчиков, каждый из которых способен претерпевать обратимое окисление и восстановление в результате потери и присоединения электронов при взаимодействии с другим переносчиком

Рис. 2. Взаимное расположение компонентов дыхательной цепи с указанием мест фосфорилирования и специфических ингибиторов.

Без энергии невозможно существование ни одного живого существа. Ведь каждая химическая реакция, любой процесс требуют ее присутствия. Любому человеку легко понять это и почувствовать. Если весь день не употреблять пищу, то уже к вечеру, а возможно, и раньше, начнутся симптомы повышенной усталости, вялости, сила значительно уменьшится.

Каким же способом разные организмы приспособились к получению энергии? Откуда она берется и какие процессы при этом происходят внутри клетки? Попробуем разобраться в данной статье.

Получение энергии организмами

Каким бы способом ни потребляли существа энергию, в основе всегда лежат Примеры можно привести разные. Уравнение фотосинтеза, который осуществляют зеленые растения и некоторые бактерии − это тоже ОВР. Естественно, что процессы будут отличаться в зависимости от того, какое живое существо имеется в виду.

Так, все животные − это гетеротрофы. То есть такие организмы, которые не способны самостоятельно формировать внутри себя готовые органические соединения для дальнейшего их расщепления и высвобождения энергии химических связей.

Растения, напротив, являются самым мощным продуцентом органики на нашей планете. Именно они осуществляют сложный и важный процесс под названием фотосинтез, который заключается в формировании глюкозы из воды, углекислого газа под действием специального вещества − хлорофилла. Побочным продуктом является кислород, который является источником жизни для всех аэробных живых существ.

Окислительно-восстановительные реакции, примеры которых иллюстрируют данный процесс:

  • 6CO 2 + 6H 2 O = хлорофилл = C 6 H 10 O 6 + 6O 2 ;
  • диоксид углерода + под воздействием пигмента хлорофилла (фермент реакции) = моносахарид + свободный молекулярный кислород.

Также существуют и такие представители биомассы планеты, которые способны использовать энергию химических связей неорганических соединений. Их называют хемотрофы. К ним относят многие виды бактерий. Например, водородные микроорганизмы, окисляющие молекулы субстрата в почве. Процесс происходит по формуле: 2Н 2 +0 2 =2Н 2 0.

История развития знаний о биологическом окислении

Процесс, который лежит в основе получения энергии, сегодня вполне известен. окисление. Биохимия настолько подробно изучила тонкости и механизмы всех стадий действия, что загадок почти не осталось. Однако так было не всегда.

Первые упоминания о том, что внутри живых существ происходят сложнейшие преобразования, которые являются по природе химическими реакциями, появились примерно в XVIII веке. Именно в это время Антуан Лавуазье, знаменитый французский химик, обратил свое внимание на то, как схожи биологическое окисление и горение. Он проследил примерный путь поглощаемого при дыхании кислорода и пришел к выводу, что внутри организма происходят процессы окисления, только более медленные, чем снаружи при горении различных веществ. То есть окислитель − молекулы кислорода − вступают в реакцию с органическими соединениями, а конкретно, с водородом и углеродом из них, и происходит полное превращение, сопровождающееся разложением соединений.

Однако, хоть данное предположение по сути своей вполне реально, непонятными оставались многие вещи. Например:

  • раз процессы схожи, то и условия их протекания должны быть идентичными, но окисление происходит при низкой температуре тела;
  • действие не сопровождается выбросом колоссального количества тепловой энергии и не происходит образования пламени;
  • в живых существах не менее 75-80% воды, но это не мешает «горению» питательных веществ в них.

Чтобы ответить на все эти вопросы и понять, что на самом деле представляет собой биологическое окисление, понадобился не один год.

Существовали разные теории, которые подразумевали важность наличия в процессе кислорода и водорода. Самые распространенные и наиболее успешные были:

  • теория Баха, именуемая перекисной;
  • теория Палладина, основывающаяся на таком понятии, как «хромогены».

В дальнейшем было еще много ученых, как в России, так и других странах мира, которые постепенно вносили дополнения и изменения в вопрос о том, что же такое биологическое окисление. Биохимия современности, благодаря их трудам, может рассказать о каждой реакции этого процесса. Среди самых известных имен в этой области можно назвать следующие:

  • Митчелл;
  • С. В. Северин;
  • Варбург;
  • В. А. Белицер;
  • Ленинджер;
  • В. П. Скулачев;
  • Кребс;
  • Грин;
  • В. А. Энгельгардт;
  • Кейлин и другие.

Виды биологического окисления

Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе.

Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород.

Таким образом, виды биологического окисления следующие.

  1. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения.
  2. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода.

Участники процесса

Перейдем к рассмотрению непосредственно самих особенностей, которые заключает в себе биологическое окисление. Определим основные соединения и их аббревиатуры, которые в дальнейшем будем использовать.

  1. Ацетилкоэнзим-А (ацетил-КоА) − конденсат щавелевой и уксусной кислоты с коферментом, формирующийся на первой стадии цикла трикарбоновых кислот.
  2. Цикл Кребса (цикл лимонной кислоты, трикарбоновых кислот) − ряд сложных последовательных окислительно-восстановительных преобразований, сопровождающихся высвобождением энергии, восстановлением водорода, образованием важных низкомолекулярных продуктов. Является главным звеном ката- и анаболизма.
  3. НАД и НАД*Н − фермент-дегидрогеназа, расшифровывающийся как никотинамидадениндинуклеотид. Вторая формула − это молекула с присоединенным водородом. НАДФ - никотинамидадениндинуклетид-фосфат.
  4. ФАД и ФАД*Н − флавинадениндинуклеотид - кофермент дегидрогеназ.
  5. АТФ − аденозинтрифосфорная кислота.
  6. ПВК − пировиноградная кислота или пируват.
  7. Сукцинат или янтарная кислота, Н 3 РО 4 − фосфорная кислота.
  8. ГТФ − гуанозинтрифосфат, класс пуриновых нуклеотидов.
  9. ЭТЦ − электроно-транспортная цепь.
  10. Ферменты процесса: пероксидазы, оксигеназы, цитохромоксидазы, флавиновые дегидрогеназы, различные коферменты и прочие соединения.

Все эти соединения являются непосредственными участниками процесса окисления, которое происходит в тканях (клетках) живых организмов.

Стадии биологического окисления: таблица

Стадия Процессы и значение
Гликолиз Суть процесса заключается в бескислородном расщеплении моносахаридов, которое предшествует процессу клеточного дыхания и сопровождается выходом энергии, равным двум молекулам АТФ. Также образуется пируват. Это начальная стадия для любого живого организма гетеротрофа. Значение в образовании ПВК, который поступает на кристы митохондрий и является субстратом для тканевого окисления кислородным путем. У анаэробов после гликолиза наступают процессы брожения разного типа.
Окисление пирувата Этот процесс заключается в преобразовании ПВК, образовавшейся в ходе гликолиза, в ацетил-КоА. Он осуществляется при помощи специализированного ферментного комплекса пируватдегидрогеназы. Результат − молекулы цетил-КоА, которые вступают в В этом же процессе осуществляется восстановление НАД до НАДН. Место локализации − кристы митохондрий.
Распад бета-жирных кислот Этот процесс осуществляется параллельно с предыдущим на кристах митохондрий. Суть его в том, чтобы переработать все жирные кислоты в ацетил-КоА и поставить его в цикл трикарбоновых кислот. При этом также восстанавливается НАДН.
Цикл Кребса

Начинается с превращения ацетил-КоА в лимонную кислоту, которая и подвергается дальнейшим преобразованиям. Одна из важнейших стадий, которые включает в себя биологическое окисление. Данная кислота подвергается:

  • дегидрированию;
  • декарбоксилированию;
  • регенерации.

Каждый процесс совершается несколько раз. Результат: ГТФ, диоксид углерода, восстановленная форма НАДН и ФАДН 2 . При этом ферменты биологического окисления свободно располагаются в матриксе митохондриальных частиц.

Окислительное фосфорилирование

Это последняя стадия преобразования соединений в организмах эукариот. При этом происходит преобразование аденозиндифосфата в АТФ. Энергия, необходимая для этого, берется при окислении тех молекул НАДН и ФАДН 2 , которые сформировались на предыдущих стадиях. Путем последовательных переходов по ЭТЦ и понижением потенциалов происходит заключение энергии в макроэргические связи АТФ.

Это все процессы, которые сопровождают биологическое окисление при участии кислорода. Естественно, что описаны они не полностью, а лишь по сущности, так как для подробного описания нужна целая глава книги. Все биохимические процессы живых организмов чрезвычайно многогранны и сложны.

Окислительно-восстановительные реакции процесса

Окислительно-восстановительные реакции, примеры которых могут проиллюстрировать описанные выше процессы окисления субстрата, следующие.

  1. Гликолиз: моносахарид (глюкоза) + 2НАД + + 2АДФ = 2ПВК + 2АТФ + 4Н + + 2Н 2 О + НАДН.
  2. Окисление пирувата: ПВК + фермент = диоксид углерода + ацетальдегид. Затем следующий этап: ацетальдегид + Кофермент А = ацетил-КоА.
  3. Множество последовательных преобразований лимонной кислоты в цикле Кребса.

Данные окислительно-восстановительные реакции, примеры которых приведены выше, отражают суть происходящих процессов лишь в общем виде. Известно, что соединения, о которых идет речь, относятся к высокомолекулярным, либо имеющим большой углеродный скелет, поэтому изобразить все полными формулами просто не представляется возможным.

Энергетический выход тканевого дыхания

По приведенным выше описаниям очевидно, что подсчитать суммарный выход всего окисления по энергии несложно.

  1. Две молекулы АТФ дает гликолиз.
  2. Окисление пирувата 12 молекул АТФ.
  3. 22 молекулы приходится на цикл трикарбоновых кислот.

Итог: полное биологическое окисление по аэробному пути дает выход энергии, равный 36 молекулам АТФ. Значение биологического окисления очевидно. Именно эта энергия используется живыми организмами для жизни и функционирования, а также для согревания своего тела, движения и прочих необходимых вещей.

Анаэробное окисление субстрата

Второй вид биологического окисления − анаэробный. То есть тот, что осуществляется у всех, но на котором останавливаются микроорганизмы определенных видов. и именно с него четко прослеживаются различия в дальнейшем преобразовании веществ между аэробами и анаэробами.

Стадии биологического окисления по данному пути немногочисленны.

  1. Гликолиз, то есть окисление молекулы глюкозы до пирувата.
  2. Брожение, приводящее к регенерации АТФ.

Брожение может быть разных типов, в зависимости от организмов, его осуществляющих.

Молочнокислое брожение

Осуществляется молочнокислыми бактериями, а также некоторыми грибками. Суть состоит в восстановлении ПВК до молочной кислоты. Этот процесс используют в промышленности для получения:

  • кисломолочных продуктов;
  • квашеных овощей и фруктов;
  • силоса для животных.

Этот вид брожения является одним из самых применяемых в нуждах человека.

Спиртовое брожение

Известно людям с самой древности. Суть процесса заключается в превращении ПВК в две молекулы этанола и две диоксида углерода. Благодаря такому выходу продукта, данный вид брожения используют для получения:

  • хлеба;
  • вина;
  • пива;
  • кондитерских изделий и прочего.

Осуществляют его грибы дрожжи и микроорганизмы бактериальной природы.

Маслянокислое брожение

Достаточно узкоспецифичный вид брожения. Осуществляется бактериями рода Клостридиум. Суть состоит в превращении пирувата в масляную кислоту, придающую продуктам питания неприятный запах и прогорклый вкус.

Поэтому реакции биологического окисления, идущие по такому пути, практически не используют в промышленности. Однако эти бактерии самостоятельно засевают продукты питания и наносят вред, понижая их качество.

Живые организмы не могут существовать без энергии. Ее требует каждый процесс, каждая химическая реакция. Получать энергию многие живые существа, в том числе и человек, могут с пищей. Стоит детально разобраться, откуда появляется энергия, и какие реакции протекают в это время в клетках живых организмов.

Значение биологического окисления и история его исследования

В основе получения энергии лежит процесс биологического окисления. Сейчас он изучен, создана даже целая наука, занимающаяся всеми тонкостями и механизмами процесса - биохимия. Биологическое окисление - это совокупность окислительно-восстановительных превращений веществ в живых . Окислительно-восстановительными называют реакции, которые протекают с изменением степени окисления атомов вследствие перераспределения электронов между ними.

Первые предположения ученых о том, что внутри каждого живого организма протекают сложные , были выдвинуты в XVI­II столетии. Изучением проблемы занимался французский химик Антуан Лавуазье, обративший внимание на то, что процессы горения и биологического окисления похожи друг на друга.

Ученый проследил путь кислорода, который поглощается живым организмом в процессе дыхания, и сделал вывод, что в организме происходит процесс окисления, напоминающий процесс горения, но протекающий более медленно. Лавуазье обнаружил, что молекулы кислорода (окислитель) взаимодействуют с органическими соединениями, содержащими углерод и водород. В результате происходит абсолютное , при котором соединения разлагаются.

Некоторые моменты в процессе изучения проблемы оставались для ученых непонятыми:

  • почему окисление происходит при низкой температуре тела, в отличие от схожего ему процесса горения;
  • почему окисление не сопровождается выбросом пламени и не большим выбросом освободившейся энергии;
  • как могут «гореть» питательные вещества в организме, если тело примерно на 80% состоит из воды.

Чтобы ответить на эти и многие другие вопросы, а также уяснить, что такое биологическое окисление, ученым потребовался не один год. К настоящему времени химиками были изучены: связь дыхания с другими процессами обмена веществ, в т.ч. процесс фосфорилирования. Кроме того, ученые исследовали свойства ферментов, катализирующих реакции биологического окисления; локализацию в клетке; механизм аккумуляции и преобразования энергии.

Более сложный способ преобразования питательных веществ в энергию - аэробное биологическое окисление, или тканевое дыхание. Эта реакция осуществляется во всех аэробных организмах, использующих кислород в процессе дыхания. Аэробный способ биологического окисления невозможен без молекулярного кислорода.

Пути биологического окисления и участники процесса

Чтобы окончательно понять, что собой представляет процесс биологического окисления, следует рассмотреть его стадии.

Гликолиз - это беcкислородное расщепление моносахаридов, предшествующее процессу клеточного дыхания и сопровождающееся выходом энергии. Такая стадия является начальной для каждого организма-гетеротрофа. После гликолиза у анаэробов наступает процесс брожения.

Окисление пирувата заключается в преобразовании пировиноградной кислоты, получаемой в процессе гликолиза, в ацетилкоэнзим. Реакция происходит с помощью ферментного комплекса пируватдегидрогеназы. Локализация – кристы митохондрий.

Распад бета-жирных кислот осуществляется параллельно с окислением пирувата на кристах митохондрий. Цель – переработка всех жирных кислот в ацетилкоэнзим и постановка его в цикл трикарбоновых кислот.

Цикл Кребса : сначала ацетилкоэнзим превращается в лимонную кислоту, затем она подвергается последующим преобразованиям (дегидрированию, декарбоксилированию и регенерации). Все процессы несколько раз повторяются.

Окислительное фосфорилирование - заключительная стадия преобразования в организмах эукариот соединений. Осуществляется преобразование аденозиндифосфата в аденозинтрифосфорную кислоту. Необходимая для этого энергия поступает в процессе окисления молекул фермент-дегидрогеназа и кофермента дегидрогеназа, сформировавшихся в предыдущих стадиях. Затем энергия заключается в макроэргические связи аденозинтрифосфорной кислоты.


АТФ

Таким образом, окисление веществ осуществляется такими способами:

  • отщеплением водорода от субстрата, который окисляется (процесс дегидрирования);
  • отдачей субстратом электрона;
  • присоединением кислорода к субстрату.

В клетках живых организмов встречаются все перечисленные типы окислительных реакций, катализируемых соответствующими ферментами - оксидоредуктазами. Процесс окисления происходит неизолированно, он связан с реакцией восстановления: одновременно происходят реакции присоединения водорода или электрона, то есть осуществляются окислительно-восстановительные реакции. Процесс окисления - это каждая , которая сопровождается отдачей электронов с увеличением степеней окисления (окисленный атом имеет большую степень окисления). С окислением вещества может происходить и восстановление - присоединение электронов к атомам другого вещества.

Биологическое окисление это совокупность окислительно-восстановительных реакций, происходящих в живых организмах . На их долю приходится около 99% от всего энергоснабжения организма. С помощью окислительно-восстановительных процессов в организме разрушаются и некоторые токсические вещества, образующиеся в результате обмена веществ (например, пероксид водорода).

Еще со времен французского химика А.Лавуазье окисление в организме отождествляли с горением, ибо продукты окисления и горения глюкозы (СО 2 и Н 2 О) и количество выделяемой энергии (около 2850 кДж/моль) оказались одинаковыми.

Однако между биологическим окислением и горением существуют принципиальные различия:

1. Биологическое окисление протекает в мягких условиях (температура тела, постоянные давление и рН).

2. При биологическом окислении энергия высвобождается ступенчато, причем часть ее аккумулируется в макроэргических соединениях, при горении энергия выделяется сразу и рассеивается в виде тепла.

3. Биологическое окисление более интенсивно протекает в органах и тканях с большим содержанием воды.

Окислительно-восстановительные реакции протекают в организме животных по следующим стадиям:

1.Образование ацетил-КоА (при окислении моносахаридов, глицерина, жирных кислот, аминокислот);

2.Окисление ацетил-КоА в цикле трикарбоновых кислот с образованием СО 2 и восстановленных коферментов НАДН(Н +) и ФАДН 2 ;

3. Окисление водорода восстановленных коферментов НАДН(Н +) и ФАДН 2 в дыхательной цепи с образованием воды и АТФ.

· ДЫХАТЕЛЬНАЯ ЦЕПЬ, СОПРЯЖЕННАЯ С ТРАНСФОРМАЦИЕЙ ЭНЕРГИИ.

Различают 2 вида дыхательной цепи - 1) сопряженная с трансформацией энергии или окислительное фосфорилирование и 2) несопряженная с трансформацией энергии или свободное окисление .

Дыхательная цепь, сопряженная с трансформацией энергии локализована во внутренней мембране митохондрий. Она включает 4 ферментативных комплекса: I - НАДН(Н +) - КоQ-оксидоредуктаза, II – сукцинат – КоQ-оксидоредуктаза, III - КоQ - цитохром с - оксидоредуктаза и IV- цитохромоксидаза. В процессе функционирования такой дыхательной цепи осуществляется перенос электронов от восстановленных коферментов НАДН(Н +) и ФАДН 2 к молекулярному кислороду, сопряженный с синтезом АТФ.



Источником НАДН(Н +) и ФАДН 2 являются дегидрогеназные реакции, протекающие по схеме:

SН 2 + НАД + ® S + НАДН(Н +) ; SН 2 + ФАД ® S + ФАДН 2

В качестве субстратов чаще всего выступают пировиноградная кислота, глутаминовая кислота, промежуточные метаболиты ЦТК (изолимонная кислота, a-кетоглутаровая, яблочная).

Последовательность переноса электронов в дыхательной цепи от НАДН(Н +) и ФАДН 2 к молекулярному кислороду можно представить в виде схемы:

Сукцинат ® ФАДН 2

Железо-серный белок

НАДН(Н +) ® ФМН ® железо-серный белок ® КоQ (убихинон) ® цитохром b ® железо-серный белок ® цитохром с 1 ® цитохром с ® цитохром а ® цитохром а 3 ® О 2

Порядок расположения компонентов в дыхательной цепи зависит от величины их окислительно-восстановительного потенциала. Для каждого последующего компонента характерна более высокая окислительная способность.

В состав III и IV комплексов входят сложные белки из группы хромопротеинов - цитохромы . Их простетическая группа близка к гему и содержит железо. Однако в противоположность гемоглобину, имеющему двухвалентное железо, цитохромы содержат железо, которое может переходить из двухвалентного (восстановленного) в трехвалентное (окисленное) состояние и обратно.

Конечным акцептором электронов является О 2 . Восстановление кислорода до воды происходит по схеме:

2Н + + 2 е + 1/2 О 2 ® Н 2 О или 4 Н + + 4 е + О 2 ® 2 Н 2 О

Ионы Н + для образования воды берутся из матрикса митохондрий.

Согласно хемиосмотической теории П.Митчелла сопряжение переноса электронов и синтеза АТФ обеспечивается градиентом электрохимического потенциала ионов водорода (рис. 3) Dm Н + , который состоит из двух компонентов - разности электрических потенциалов (Dj) и разности концентраций ионов водорода - D рН. Перенос электронов по дыхательной цепи приводит к выбросу протонов из матрикса на цитоплазматическую сторону внутренней митохондриальной мембраны где, таким образом возрастает концентрация ионов водорода. В результате происходит генерирование DрН (защелачивание в матриксе и закисление с внешней стороны внутренней митохондриальной мембраны) и Dj (разности электрических потенциалов, причем та часть внутренней мембраны, которая обращена к матриксу, приобретает отрицательный заряд, а та, которая обращена к межмембранному пространству – положительный). Протонный градиент используется для синтеза АТФ, который осуществляется при помощи ферментного комплекса АТФ-синтазы в ходе обратного поступления протонов в митохондриальный матрикс.

Выброс протонов происходит в 3-х пунктах потока электронов по дыхательной цепи от НАДН(Н +) к О 2 – в I, III и IV комплексах; 1-й пункт - это НАДН(Н +) – КоQ - оксидоредуктазный комплекс; 2-й пункт - КоQ - цитохром с - оксидоредуктазный комплекс; 3-й - цитохромоксидазный комплекс. Протонный градиент, генерируемый в каждом из этих пунктов при переносе одной пары электронов от НАДН(Н +) к О 2, используется для синтеза одной молекулы АТФ (АДФ + Н 3 РО 4 ® АТФ). Окисление одной молекулы НАДН(Н +) дает 3 АТФ, тогда как окисление ФАДН 2 - 2 АТФ (энергии, выделяющейся в процессе функционирования сукцинат-КоQ-оксидоредуктазного комплекса недостаточно для синтеза АТФ, т.е. трансформации энергии здесь не происходит).


Рис.3. Схема переноса протонов водорода в митохондриях.

Таким образом, окислительное фосфорилирование представляет собой процесс переноса электронов от восстановленных коферментов НАДН(Н +) и ФАДН 2 к молекулярному кислороду, сопряженный с синтезом АТФ. Окислительное фосфорилирование часто характеризуют отношением Р: О (число молей неорганического фосфата, использованного для синтеза АТФ в расчете на один атом потребляемого кислорода).

Скорость окислительного фосфорилирования зависит, в первую очередь, от содержания АДФ: чем быстрее расходуется АТФ для нужд организма, тем больше накапливается АДФ и тем больше потребность в энергии, а следовательно и в синтезе АТФ. Накопление АТФ, естественно, сопровождается снижением содержания АДФ, скорость образования АТФ при этом также уменьшится. При ограниченной потребности в АТФ падает и скорость окислительного распада субстратов. Регуляцию скорости окислительного фосфорилирования содержанием АТФ называют дыхательным контролем .

· СУБСТРАТНОЕ ФОСФОРИЛИРОВАНИЕ

Субстратное фосфорилирование является альтернативным механизмом образования АТФ, так как оно не требует образования DmН + . В ходе окисления субстратов образуются макроэргические соединения, разрыв макроэргической связи в которых сопряжен с фосфорилированием АДФ (т.е. с синтезом АТФ).

Пример субстратного фосфорилирования:

С – Н +НАД­­­­­ + С - О ~ Р = О СООН

| + H 3 PO 4 | | +АДФ |

Н – С – ОН ОН ¾¾¾® Н – С – ОН ОН ОН ¾¾¾¾® Н – С – ОН ОН

| | -НАДН(Н +) | | -АТФ | |

СН 2 О - Р = О СН 2 – О - Р = О СН 2 – О – Р = О

ГА – 3 – Ф 1,3 – ДФГ 3 – ФОСФОГЛИЦЕРАТ (3-ФГ)

В процессе гликолиза высвобождаемая при окислении глицеральдегид-3-фосфата (ГА-3-Ф) энергия, аккумулируется в макроэргической связи 1,3-дифосфоглицерата (1,3-ДФГ). Расщепление этой связи в дальнейшем сопряжено с фосфорилированием АДФ, в результате чего осуществляется образование АТФ.

· МАКРОЭРГИЧЕСКИЕ СОЕДИНЕНИЯ

Энергия, прежде чем быть использованной для нужд организма, аккумулируется в макроэргических соединениях . Гидролиз таких соединений сопровождается выделением большого количества энергии (свыше 7 ккалмоль). К ним относятся нуклеозидтрифосфаты, ацилфосфаты, енолфосфаты, тиоэфиры, фосфагены.

Нуклеозидтрифосфаты (АТФ, ГТФ, ЦТФ, УТФ) содержат по 2 макроэргические связи.

АТФ (рис. 4) является главным, непосредственно используемым донором свободной энергии в биологических системах.

Рис.4. Строение АТФ.

Гидролиз АТФ может происходить двумя путями:

1) АТФ + Н 2 О ® АДФ + Н 3 РО 4 ;

2) АТФ + Н 2 О ® АМФ + Н 4 Р 2 О 7

В обоих случаях при стандартных условиях высвобождается 7,3 ккалмоль энергии (при условиях, существующих в клетке в норме, около 12 ккалмоль).

Высвобождаемая при гидролизе АТФ энергия, используется для процессов биосинтеза сложных веществ из более простых, при мышечном сокращении, для активного транспорта молекул и ионов (рис. 5).

Рис.5. Основные пути использования энергии АТФ.

Примером ацилфосфата является 1,3-дифосфоглицерат, являющийся промежуточным продуктом гликолиза (при его гидролизе выделяется 11,8 ккалмоль энергии).

С - О ~ Р = О

Н – С – ОН ОН ОН

СН 2 – О - Р = О

1,3-дифосфоглицерат

К енолфосфатам относится фосфоенолпируват, также участвующий в процессе гликолиза (гидролиз его макроэргической связи приводит к выделению 14,8 ккалмоль энергии).

С – О ~ Р = О

фосфоенолпируват

Активная уксусная кислота (ацетил-КоА) и активная янтарная кислота (сукцинил-КоА) являются тиоэфирами .

СН 3 – С ~ S – КоА НООС – СН 2 – СН 2 – С ~ S – КоА

ацетил-КоА сукцинил-КоА

Креатинфосфат (при его гидролизе выделяется 10,3 ккалмоль энергии) относится к фосфагенам .

Н – N ~ Р = О

креатинфосфат

Креатинфосфат используется в мышечной ткани для регенерации АТФ (креатинфосфат + АДФ ® креатин + АТФ).

· СВОБОДНОЕ ОКИСЛЕНИЕ

Свободное окисление не сопряжено с синтезом АТФ. Выделяющаяся при этом энергия рассеивается в виде тепла. Классическим примером разобщения окисления с образованием АТФ является действие 2,4-динитрофенола (ДНФ) . Это соединение использовалось для снижения массы тела. Оно резко увеличивает протонную проницаемость клеточных мембран, разобщает окислительное фосфорилирование и приводит к развитию тяжелых дистрофических процессов в результате недостаточного синтеза клеткой АТФ.

Частичное разобщение окисления с фосфорилированием наблюдается при многих заболеваниях, поскольку митохондрии являются наиболее чувствительными клеточными органеллами к действию неблагоприятных факторов внешней среды. Митохондриальная патология развивается при гипертиреозе. При избыточном выделении щитовидной железой гормонов происходит набухание митохондрий и их распад, что приводит к снижению образования АТФ. При этом усиливаются окислительные процессы, отмечается более высокая чем в норме температура тела, учащается сердцебиение.

Разобщение окислительного фосфорилирования может быть биологически полезным. Оно представляет собой способ генерирования тепла для поддержания температуры тела у зимнеспящих животных, у некоторых новорожденных животных и у млекопитающих, адаптированных к холоду. Для этого процесса термогенеза специализирована бурая жировая ткань, очень богатая митохондриями. В качестве разобщителей в ней выступают жирные кислоты, высвобождение которых в свою очередь регулируется норадреналином. Таким образом, степень разобщения окислительного фосфорилирования в бурой жировой ткани находится под гормональным контролем. Митохондрии в этой ткани могут выполнять функцию генераторов АТФ или миниатюрных обогревательных печей.

В микросомах печени с участием цитохрома Р-450 происходит метаболизм многих лекарственных веществ путем их гидроксилирования. Восстановителями цитохромов являются НАДН(Н +) и НАДФН(Н +):

Лек - Н + О 2 + цитохром Р-450 (Fe 2+) + 2Н + ® Лек - ОН + Н 2 О + цитохром Р-450

Митохондриальные цитохром Р-450 - содержащие монооксигеназные системы находятся в коре надпочечников, в семенниках, яичниках, плаценте. Они участвуют в синтезе стероидных гормонов из холестерина. В печени происходит гидроксилирование холестерина по положению 26 в ходе биосинтеза желчных кислот.

· КОНТРОЛЬНЫЕ ВОПРОСЫ