Красота Оладьи Стрижки

Подключение генератора импульсов. Генератор на NE555 с регулировкой частоты. Модель прямоугольных импульсов с регулятором

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15...17 В и токе 20...50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1...2 мкФ. Сопротивления резисторов R2, R3 - 10...15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема - К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1...10 000 Гц. Микросхема - К561ЛН2.

Если нужна высокая стабильность генерируемой частоты, то такой генератор можно сделать «кварцованным» - включить кварцевый резонатор на нужную частоту. Ниже показан пример кварцованного генератора на частоту 4,3 МГц:

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема - К561ЛН2.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

Простой генератор импульсов на моргающем светодиоде в ряде случаев позволяет собрать компактное устройство для встраивания и управления мощными светодиодами или источниками звука.

Генератор импульсов

Вашему вниманию предлагается простейшая электронная схема с задающим генератором на мигающем светодиоде. Сначала немного теории о мигающем светодиоде. Мигающий светодиод это симбиоз интегральной микросхемы и собственно светодиода. Микросхема по функционалу заменяет таймер с электролитическими конденсаторами большой емкости и представляет из себя генератор высокой частоты и делитель на логических элементах на выходе которого частота понижается в зависимости от типа мигающего светодиода от единиц до долей Герца.

Как сделать генератор импульсов своими руками

Схема приведена на рисунке и максимально проста. Напряжение питания 3 Вольта от двух батарей формата АА, но схема будет работать и от литиевого элемента. Возможно питание даже от солнечной батареи, подобные решения уже применялись при строительстве , и садовых фонарей. Нагрузкой светодиода будет резистор номиналом 1-3 кОм, при изменении номинала резистора в больших пределах можно несколько изменить частоту мигания. При возникновении вспышки появляется импульс тока, который можно усилить, роль ключа выполняет n-p-n транзистор. В коллектор транзистора можно подключить нагрузку в виде мощных светодиодов, реле, двигателя или источника звука. Отсутствие электролитических конденсаторов в прерывателе позволило собрать своими руками компактную схему на небольшой макетной плате и встроить в игрушку робота. Литиевый круглый элемент как раз поместился в одну из крышек. При проверке светодиода от батарей обязательно включайте в цепь резистор ограничитель тока. Цоколевка включения светодиода показана на фото. Смотрите видео работы схемы.

Схема генератора Плата генератора импульсов

Микросхема интегрального таймера 555 была разработана 44 года назад, в 1971 году и до сих пор популярна. Пожалуй, ещё ни одна микросхема так долго не служила людям. Чего только на ней не собирали, даже поговаривают, что номер 555 - это число вариантов её применения:) Одно из классических применений 555 таймера - регулируемый генератор прямоугольных импульсов.
В этом обзоре будет описание генератора, конкретное применение будет в следующий раз.

Плату прислали запечатанной в антистатический пакетик, но микросхема очень дубовая и статикой её так просто не убить.


Качество монтажа нормальное, флюс не отмыт




Схема генератора стандартная для получения скважности импульсов ≤2


Красный светодиод подключен на выход генератора и при малой выходной частоте - мигает.
По китайской традиции, производитель забыл поставить ограничивающий резистор последовательно с верхним подстроечником. По спецификации, он должен быть не менее 1кОм, чтобы не перегружать внутренний ключ микросхемы, однако, реально схема работает и при меньшем сопротивлении - вплоть до 200 Ом, при котором происходит срыв генерации. Добавить ограничивающий резистор на плату затруднительно из-за особенности разводки печатной платы.
Диапазон рабочих частот выбирается установленной перемычной в одной из четырёх позиций
Частоты продавец указал неверно.


Реально измеренные частоты генератора при питающем напряжении 12В
1 - от 0,5Гц до 50Гц
2 - от 35Гц до 3,5kГц
3 - от 650Гц до 65кГц
4 - от 50кГц до 600кГц

Нижний резистор (по схеме) задаёт длительность паузы импульса, верхний резистор задаёт период следования импульсов.
Напряжение питания 4,5-16В, максимальная нагрузка на выходе - 200мА

Стабильность выходных импульсов на 2 и 3 диапазонах невысока из-за применения конденсаторов из сегнетоэлектрической керамики типа Y5V - частота сильно уползает не только при изменении температуры, но даже при изменении питающего напряжения (причём в разы). Рисовать графики не стал, просто поверьте на слово.
На остальных диапазонах стабильность импульсов приемлемая.

Вот что он выдаёт на 1 диапазоне
На максимальном сопротивлении подстроечников


В режиме меандр (верхний 300 Ом, нижний на максимуме)


В режиме максимальной частоты (верхний 300 Ом, нижний на минимум)


В режиме минимальной скважности импульсов (верхний подстроечник на максимуме, нижний на минимуме)

Для китайских производителей: добавьте ограничивающий резистор 300-390 Ом, замените керамический конденсатор 6,8мкФ на электролитический 2,2мкФ/50В, и замените конденсатор 0,1мкФ Y5V на более качественный 47нФ X5R (X7R)
Вот готовая доработанная схема


Себе генератор не переделывал, т.к. указанные недостатки для моего применения не критичны.

Вывод: полезность устройства выясняется, когда какая-либо Ваша самоделка потребует подать на неё импульсы:)
Продолжение следует…

Планирую купить +32 Добавить в избранное Обзор понравился +28 +58

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео