Красота Оладьи Стрижки

Однородная марковская цепь. Регулярные цепи маркова. Структура данных Dictogram

Маркова цепь (Markov Chain) - марковский процесс с дискретным временем, заданный в измеримом пространстве.

Введение

Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова (1856-1922), впервые начавшего изучение вероятностной связи случайных величин и создавшего теорию, которую можно назвать "динамикой вероятностей".

В дальнейшем основы этой теории явились исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д. В настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.

Благодаря сравнительной простоте и наглядности математического аппарата, высокой достоверности и точности получаемых решений, особое внимание марковские процессы приобрели у специалистов, занимающихся исследованием операций и теорией принятия оптимальных решений.

Простой пример: бросание монеты

Прежде чем дать описание общей схемы, обратимся к простому примеру. Предположим, что речь идет о последовательных бросаниях монеты при игре "в орлянку "; монета бросается в условные моменты времени t = 0, 1, ... и на каждом шаге игрок может выиграть ±1 с одинаковой вероятностью 1/2, таким образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ...

При условии, что ξ(t) = k, на следующем шаге выигрыш будет уже равен ξ(t+1) = k ± 1, принимая указанные значения j = k ± 1 c одинаковой вероятностью 1/2.

Условно можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.

Формулы и определения

Обобщая этот пример, можно представить себе "систему" со счетным числом возможных "фазовых" состояний, которая с течением дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.

Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов

ξ(0) - ξ(1) - ... - ξ(t) - ... ... (1)

Формально обозначим все возможные состояния целыми i = 0, ±1, ... Предположим, что при известном состоянии ξ(t) = k на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью

p kj = P(ξ(t+1) = j|ξ(t) = k) ... (2)

независимо от ее поведения в прошлом, точнее, независимо от цепочки переходов (1) до момента t:

P(ξ(t+1) = j|ξ(0) = i, ..., ξ(t) = k) = P(ξ(t+1) = j|ξ(t) = k) при всех t, k, j ... (3) - марковское свойство.

Такую вероятностную схему называют однородной цепью Маркова со счетным числом состояний - ее однородность состоит в том, что определенные в (2) переходные вероятности p kj , ∑ j p kj = 1, k = 0, ±1, ..., не зависят от времени, т.е. P(ξ(t+1) = j|ξ(t) = k) = P ij - матрица вероятностей перехода за один шаг не зависит от n.

Ясно, что P ij - квадратная матрица с неотрицательными элементами и единичными суммами по строкам.

Такая матрица (конечная или бесконечная) называется стохастической матрицей. Любая стохастическая матрица может служить матрицей переходных вероятностей.

На практике: доставка оборудования по округам

Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее:

1) после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях - в В и в 40 случаях - в С;

2) после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях - в В и в 20 случаях - в С;

3) после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях - в В и в 20 случаях - в С.

Таким образом, район следующей доставки определяется только предыдущей доставкой.

Матрица вероятностей перехода будет выглядеть следующим образом:

Например, р 12 = 0.4 - это вероятность того, что после доставки в район В следующая доставка будет производиться в районе А.

Допустим, что каждая доставка с последующим перемещением в следующий район занимает 15 минут. Тогда, в соответствии со статистическими данными, через 15 минут 30% из курьеров, находившихся в А, будут в А, 30% будут в В и 40% - в С.

Так как в следующий момент времени каждый из курьеров обязательно будет в одном из округов, то сумма по столбцам равна 1. И поскольку мы имеем дело с вероятностями, каждый элемент матрицы 0<р ij <1.

Наиболее важным обстоятельством, которое позволяет интерпретировать данную модель как цепь Маркова, является то, что местонахождние курьера в момент времени t+1 зависит только от местонахождения в момент времени t.

Теперь зададим простой вопрос: если курьер стартует из С, какова вероятность того, что осуществив две доставки, он будет в В, т.е. как можно достичь В в 2 шага? Итак, существует несколько путей из С в В за 2 шага:

1) сначала из С в С и потом из С в В;

2) С-->B и B-->B;

3) С-->A и A-->B.

Учитывая правило умножения независимых событий, получим, что искомая вероятность равна:

P = P(CA)*P(AB) + P(CB)*P(BB) + P(CC)*P(CB)

Подставляя числовые значения:

P = 0.5*0.3 + 0.3*0.4 + 0.2*0.3 = 0.33

Полученный результат говорит о том, что если курьер начал работу из С, то в 33 случаях из 100 он будет в В через две доставки.

Ясно, что вычисления просты, но если Вам необходимо определить вероятность через 5 или 15 доставок - это может занять довольно много времени.

Покажем более простой способ вычисления подобных вероятностей. Для того, чтобы получить вероятности перехода из различных состояний за 2 шага, возведем матрицу P в квадрат:

Тогда элемент (2, 3) - это вероятность перехода из С в В за 2 шага, которая была получена выше другим способом. Заметим, что элементы в матрице P 2 также находятся в пределах от 0 до 1, и сумма по столбцам равна 1.

Т.о. если Вам необходимо определить вероятности перехода из С в В за 3 шага:

1 способ. p(CA)*P(AB) + p(CB)*P(BB) + p(CC)*P(CB) = 0.37*0.3 + 0.33*0.4 + 0.3*0.3 = 0.333, где p(CA) - вероятность перехода из С в А за 2 шага (т.е. это элемент (1, 3) матрицы P 2).

2 способ. Вычислить матрицу P 3:

Матрица переходных вероятностей в 7 степени будет выглядеть следующим образом:

Легко заметить, что элементы каждой строки стремятся к некоторым числам. Это говорит о том, что после достаточно большого количества доставок уж не имеет значение в каком округе курьер начал работу. Т.о. в конце недели приблизительно 38,9% будут в А, 33,3% будут в В и 27,8% будут в С.

Подобная сходимость гарантировано имеет место, если все элементы матрицы переходных вероятностей принадлежат интервалу (0, 1).

Марковский процесс - протекающий в системе случайный процесс, который обладает свойством: для каждого момента времени t 0 вероятность любого состояния системы в будущем (при t>t 0) зависит только от ее состояния в настоящем (при t= t 0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).

На практике часто встречаются случайные процессы, которые с той или иной степенью приближения можно считать Марковскими.

Любой марковский процесс описывают с помощью вероятностей состояний и переходных вероятностей.

Вероятности состояний P k (t) марковского процесса – это вероятности того, что случайный процесс (система) в момент времени t находится в состоянии S k:

Переходные вероятности марковского процесса – это вероятности перехода процесса (системы) из одного состояния в другое:

Марковский процесс называется однородным , если вероятности перехода за единицу времени не зависят от того, где на оси времени происходит переход.

Наиболее простым процессом является цепь Маркова – марковский случайный процесс с дискретным временем и дискретным конечным множеством состояний.

При анализе цепи Маркова составляют граф состояний , на котором отмечают все состояния цепи (системы) и ненулевые вероятности за один шаг.

Марковскую цепь можно представить себе так, как будто точка, изображающая систему, случайным образом перемещается по графу состояний, перетаскивая за один шаг из состояния в состояние или задерживаясь на несколько шагов в одном и том же состоянии.

Переходные вероятности цепи Маркова за один шаг записывают в виде матрицы P=||P ij ||, которую называют матрицей вероятностей перехода или просто переходной матрицей.

Пример: множество состояний студентов специальности следующие:

S 1 – первокурсник;

S 2 – второкурсник …;

S 5 – студент 5 курса;

S 6 –специалист, окончивший вуз;

S 7 – человек, обучавшийся в вузе, но не окончивший его.

Из состояния S 1 за год возможны переходы в состояние S 2 с вероятностью r 1 ; S 1 с вероятностью q 1 и S 7 с вероятностью p 1 , причем:

r 1 +q 1 +p 1 =1.

Построим граф состояний данной цепи Маркова и разметим его переходными вероятностями (отличными от нуля).

Составим матрицу вероятностей переходов:

Переходные матрицы обладают свойством:

Все их элементы неотрицательны;

Их суммы по строкам равны единице.

Матрицы с таким свойством называют стохастическими.

Матрицы переходов позволяют вычислить вероятность любой траектории цепи Маркова с помощью теоремы умножения вероятностей.

Для однородных цепей Маркова матрицы переходов не зависят от времени.



При изучении цепей Маркова наибольший интерес представляют:

Вероятности перехода за m шагов;

Распределение по состояниям на шаге m→∞;

Среднее время пребывания в определенном состоянии;

Среднее время возвращения в это состояние.

Рассмотрим однородную цепь Маркова с n состояниями. Для получения вероятности перехода из состояния S i в состояние S j за m шагов в соответствии с формулой полной вероятности следует просуммировать произведения вероятности перехода из состояния Siв промежуточное состояние Sk за l шагов на вероятность перехода из Sk в Sj за оставшиеся m-l шагов, т.е.

Это соотношение для всех i=1, …, n; j=1, …,n можно представить как произведение матриц:

P(m)=P(l)*P(m-l).

Таким образом, имеем:

P(2)=P(1)*P(1)=P 2

P(3)=P(2)*P(1)=P(1)*P(2)=P 3 и т.д.

P(m)=P(m-1)*P(1)=P(1)*P(M-1)=P m ,

что дает возможность найти вероятности перехода между состояниями за любое число шагов, зная матрицу переходов за один шаг, а именно P ij (m) – элемент матрицы P(m) есть вероятность перейти из состояния S i в состояние S j за m шагов.

Пример : Погода в некотором регионе через длительные периоды времени становится то дождливой, то сухой. Если идет дождь, то с вероятностью 0,7 он будет идти на следующий день; если в какой-то день сухая погода, то с вероятностью 0,6 она сохраниться и на следующий день. Известно, что в среду погода была дождливая. Какова вероятность того, что она будет дождливой в ближайшую пятницу?

Запишем все состояния цепи Маркова в данной задаче: Д – дождливая погода, С – сухая погода.

Построим граф состояний:

Ответ: р 11 =р(Д пят |Д ср) =0,61.

Пределы вероятностей р 1 (m), р 2 (m),…, р n (m) при m→∞, если они существуют, называются предельными вероятностями состояний .

Можно доказать следующую теорему: если в цепи Маркова из +каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности состояний существуют и не зависят от начального состояния системы.

Таким образом, при m→∞ в системе устанавливается некоторый предельный стационарный режим, при котором каждое из состояний осуществляется с некоторой постоянной вероятностью.

Вектор р, составленный из предельных вероятностей, должен удовлетворять соотношению: р=p*P.

Среднее время пребывания в состоянии S i за время T равно p i *T, где p i - предельная вероятность состояния S i . Среднее время возвращения в состояние S i равно .

Пример.

Для многих экономических задач необходимо знать чередование годов с определенными значениями годовых стоков рек. Конечно, это чередование не может быть определено абсолютно точно. Для определения вероятностей чередования (перехода) разделим стоки, введя четыре градации (состояния системы): первую (самый низкий сток), вторую, третью, четвертую (самый высокий сток). Будем для определенности считать, что за первой градацией никогда не следует четвертая, а за четвертой – первая из-за накопления влаги (в земле, водохранилище и т.д.). Наблюдения показали, что в некоторой области остальные переходы возможны, и:

а) из первой градации можно переходить в каждую из средних вдвое чаще, чем опять в первую, т.е.

p 11 =0,2; p 12 =0,4; p 13 =0,4; p 14 =0;

б) из четвертой градации переходы во вторую и третью градации бывают в четыре и пять раз чаще, чем возвращениеекак д во вторую, т.е.

твертую, т.е.

в четвертую, т.е.

p 41 =0; p 42 =0,4; p 43 =0,5; p 44 =0,1;

в) из второй в другие градации могут быть только реже: в первую - в два раза, в третью на 25%, в четвертую - в четыре раза реже, чем переход во вторую, т.е.

p 21 =0,2;p 22 =0,4; p 23 =0,3; p 24 =0,1;

г) из третьей градации переход во вторую градацию столь же вероятен, как возвращение в третью градацию, а переходы в первую и четвертую градации бывают в четыре раза реже, т.е.

p 31 =0,1; p 32 =0,4; p 33 =0,4; p 34 =0,1;

Построим граф:

Составим матрицу вероятностей перехода:

Найдем среднее время между засухами и полноводными годами. Для этого нужно найти предельное распределение. Оно существует, т.к. условие теоремы выполняется (матрица Р 2 не содержит нулевых элементов, т.е. за два шага можно перейти из любого состояния системы в любое другое).

Откуда p 4 =0.08; p 3 =; p 2 =; p 1 =0.15

Периодичность возвращения в состояние S i равна .

Следовательно, периодичность засушливых лет в среднем равна 6.85, т.е. 6-7 лет, а дождливых 12 лет.

Регулярные цепи Маркова. При описании поведения систем марковскими процессами интересно знать, любое ли состояние может быть достигнуто в процессе функционирования системы. Если рассматривать матрицу переходных вероятностей, то она показывает вероятности перехода из одних состояний в другие. Следовательно, если какая-то степень матрицы переходных вероятностей имеет нулевые элементы, то переход в эти состояния на соответствующем шаге становится невозможным.

Цепь Маркова называется регулярной , если все состояния цепи могут быть достигнуты из любого другого . Если цепь регулярная, то в любой момент времени мы можем оказаться в любом состоянии независимо от начального состояния. Однородная марковская цепь называется регулярной , если любая степень ее матрицы вероятностей перехода П не содержит нулевых элементов. Как известно, матрица, удовлетворяющая этому условию, называется положительной .

В процессе функционирования система сервиса принимает на я-м шаге то или иное состояние с безусловной вероятностью

В некоторых случаях эти вероятности не изменяются для каждого состояния от шага к шагу, т.е.

Однородная цепь Маркова, для которой вероятности состояния одинаковы, т.е. не зависят от п, называется стационарной. В противном случае цепь называется нестационарной. Вероятность состояний называется стационарной вероятностью состояний.

Отметим, что обратная цепь...,5 ,S„,S n l ,... стационарной марковской цепи...,5 j ,S n ,S х ,... также является стационарной цепью Маркова . Стационарная цепь Маркова обратима, если и только если существует набор положительных чисел p(j), сумма которых равна 1, удовлетворяющих условиям баланса

для всех состояний.

Для однородной стационарной цепи справедлива формула

которая показывает, что на каждом шаге вероятности состояний стационарной цепи Маркова не изменяются и перемножение на матрицу переходных вероятностей не дает никакого эффекта. Как видно, вектор в (12.32) является собственным (неподвижным) вектором матрицы П 5 , принадлежащим характеристическому числу А,=1. Матрица П 5 будет положительной.

Часто на первых шагах система ведет себя как нестационарная, а после некоторого числа шагов приобретает свойства стационарности. Стационарный режим работы системы называют установившимся режимом, а нестационарный - переходным режимом.

Для цепи Маркова с конечным числом состояний при выполнении условия n rk {п) > 0, г, к = 1, К, начиная с некоторого п существуют предельные (финальные или стационарные) вероятности состояний

Следовательно,

Условие: , означает, что П является матрицей

вероятностей перехода регулярной цепи. В таком случае матрицы П" сходятся к некоторой матрице П,:

где величины , называются предельными, или финаль

ными, переходными вероятностями. Отсюда

В то же время

Объединяя два последних уравнения, получаем (12.32).

Если в качестве вектора начальных вероятностей Р т (О)для однородной цепи Маркова выбрать собственный вектор Р/ стохастической матрицы, то цепь Маркова стационарная начиная с момента t 0 .

Строки П у образуют одинаковый вероятностный вектор Р/, компоненты которого положительны. Матрица П у также является стохастической:

Так как строки П у одинаковы, то при умножении слева на любой вероятностный вектор получается, согласно (12.7), строка матрицы. Следовательно, финальные вероятности не зависят от начального состояния.

Стохастическую матрицу П и соответствующую ей однородную цепь Маркова называют правильной, если у матрицы нет характеристических чисел, отличных от единицы и равных по модулю единице, и регулярной, если дополнительно единица является простым корнем характеристического уравнения матрицы П .

Предельные переходные вероятности существуют только у правильных однородных цепей Маркова.

Характеристическое число стохастической матрицы всегда лежит в круге | А|

Если матрица П 5 существует, то желательно вычислить ее без нахождения степени матрицы П" и ее предела lim П" = П°°.

п -*? оо

Для правильной матрицы существует матрица П, которую можно вычислить по формуле :

где С(А) = (А1- л) -1 ср(А) - приведенная присоединенная матрица; ср(А) - минимальный многочлен правильной матрицы; ср"(Х) - производная многочлена.

Для регулярной матрицы ф(А) = Д(А) и С(Х) = В(А). Следовательно,

где - присоединенная матрица; А(Х) - характеристический многочлен регулярной матрицы.

Рассмотрим регулярную цепь Маркова с двумя состояниями с матрицей переходных вероятностей (12.28). Вычисленные характеристические числа матрицы (12.29) различны. Существует только одно характеристическое число, равное 1, и оно является простым (не кратным) корнем характеристического уравнения (12.29). Для вычисления финальных вероятностей используем ранее найденную присоединенную матрицу (12.30). Для характеристического корня Xj = 1

Производная по X уравнения (12.29) откуда

Согласно (12.34),

Строки полученной матрицы одинаковы и должны быть равны финальным вероятностям состояний. При умножении слева этой матрицы на любой вероятностный вектор (сумма элементов вероятностного вектора равна 1) получим строку матрицы.

Для рассмотренного ранее численного примера нахождения вероятности заказа клиентом в каждом месяце

Матрица финальных вероятностей вычисляется по (12.35) как

Подставляя численные значения а = 0,3, a (3 = 0,4, получаем Следовательно, финальная вероятность заказа Финальная вероятность незаказа

Таким образом, при выполнении отмеченных выше условий вектор безусловных вероятностей состояний в пределе стремится к вектору стационарных вероятностей состояний независимо от начальных состояний, а матрица переходных вероятностей состояний независимо от вектора состояний стремится к стационарной матрице переходных вероятностей состояний. Более того, строки матрицы переходных вероятностей состояний одинаковы и равны вектору стационарных состояний.

Эргодические цепи Маркова. Марковские цепи, для которых существуют финальные вероятности, называются эргодическими. Если марковская цепь эргодическая, то из каждого ее состояния можно попасть в любое другое. Регулярная цепь всегда эргодическая, т.е. она не содержит невозвратных состояний и имеет единственное эргодическое множество состояний. Система, описываемая эрго- дической цепью Маркова, называется статистически устойчивой.

Если цепь Маркова эргодическая и стационарные вероятности состояний существуют, то необходимо их вычислить. Перед этим были приведены способы определения стационарных вероятностей путем вычисления Игл П" = П°° и П°°.

п-> ОС

Однако можно вычислить эти вероятности и без нахождения стационарной матрицы переходных вероятностей.

Финальные вероятности р к, к = 1,К, являются решением системы уравнений

В матричной записи (12.36) имеет вид

Так как уравнения (12.36) и (12.37) вероятностные, они должны удовлетворять условию нормировки

или в матричной записи

Система (12.38) - линейно зависимая матрица П размером пх п является сингулярной и имеет ранг (п - 1). Поэтому для нахождения К неизвестных финальных вероятностей необходимо заменить одно из уравнений системы (12.36) на уравнение (12.38) .

Уравнение (12.37) может быть представлено в виде

Следовательно, для нахождения решения необходимо решить систему линейных уравнений типа

При решении необходимо использовать условие нормировки (12.39), поэтому один из столбцов матрицы В надо заменить на единичный вектор 1, в результате чего получится матрица С. Если заменяется последний столбец матрицы, система (12.40) преобразуется в систему

где

Рассмотрим систему с двумя состояниями. Согласно (12.36), Заменим последнее уравнение системы на условие нормировки:

В матричной записи (12.41) элементы уравнения будут равны:

Если существует обратная матрица С -1 , то решение можно найти в виде

Для рассматриваемого примера обратная матрица существует: поэтому

Так как п п = 1-7т 12 , п 21 = 1-тг 22 , найденное решение можно также записать как

что соответствует полученным ранее решениям.

Покажем, что если в качестве вектора начальных состояний выбрать вектор стационарных состояний, то процесс сразу же на 1-м шаге перейдет в стационарное состояние.

Цепи Маркова

Введение

§ 1. Цепь Маркова

§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

§3. Равенство Маркова

§4. Стационарное распределение. Теорема о предельных вероятностях

§5. Доказательство теоремы о предельных вероятностях в цепи Маркова

§6. Области применения цепей Маркова

Заключение

Список использованной литературы

Введение

Тема нашей курсовой работы цепи Маркова. Цепи Маркова названы так в честь выдающегося русского математика, Андрея Андреевича Маркова, который много занимался случайными процессами и внес большой вклад в развитие этой области. В последнее время можно услышать о применении цепей Маркова в самых разных областях: современных веб-технологиях, при анализе литературных текстов или даже при разработке тактики игры футбольной команды. У тех, кто не знает что такое цепи Маркова, может возникнуть ощущение, что это что-то очень сложное и почти недоступное для понимания.

Нет, все как раз наоборот. Цепь Маркова это один из самых простых случаев последовательности случайных событий. Но, несмотря на свою простоту, она часто может быть полезной даже при описании довольно сложных явлений. Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от предыдущего, но не зависит от более ранних событий.

Прежде чем углубиться, нужно рассмотреть несколько вспомогательных вопросов, которые общеизвестны, но совершенно необходимы для дальнейшего изложения.

Задача моей курсовой работы – более подробно изучить приложения цепей Маркова, постановку задачи и проблемы Маркова.

§1. Цепь Маркова

Представим, что производится последовательность испытаний.

Определение. Цепью Маркова называют последовательность испытаний, в каждом из которых появляется одно и только одно из

несовместных событий полной группы, причем условная вероятность того, что в -м испытании наступит событие , при условии, что в -м испытании наступило событие , не зависит от результатов предшествующих испытаний.

Например, если последовательность испытаний образует цепь Маркова и полная группа состоит из четырех несовместных событий

, причем известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …, пятом испытаниях.

Заметим, что независимые испытания являются частным случаем цепи Маркова. Действительно, если испытания независимы, то появление некоторого определенного события в любом испытании не зависит от результатов ранее произведенных испытаний. Отсюда следует, что понятие цепи Маркова является обобщением понятия независимых испытаний.

Часто при изложении теории цепей Маркова придерживаются иной терминология и говорят о некоторой физической системе

, которая в каждый момент времени находится в одном из состояний: , и меняет свое состояние только в отдельные моменты времени то есть система переходит из одного состояния в другое (например из в ). Для цепей Маркова вероятность перейти в какое-либо состояние в момент зависит только от того, в каком состоянии система находилась в момент , и не изменяется от того, что становятся известными ее состояния в более ранние моменты. Так же в частности, после испытания система может остаться в том же состоянии («перейти» из состояния в состояние ).

Для иллюстрации рассмотрим пример.

Пример 1. Представим, что частица, находящаяся на прямой, движется по этой прямой под влиянием случайных толчков, происходящих в моменты

. Частица может находиться в точках с целочисленными координатами: ; в точках и находятся отражающие стенки. Каждый толчок перемещает частицу вправо с вероятностью и влево с вероятностью , если только частица не находится у стенки. Если же частица находится у стенки, то любой толчок переводит ее на единицу внутрь промежутка между стенками. Здесь мы видим, что этот пример блуждания частицы представляет собой типичную цепь Маркова.

Таким образом, события называют состояниями системы, а испытания – изменениями ее состояний.

Дадим теперь определение цепи Маркова, используя новую терминологию.

Цепью Маркова с дискретным временем называют цепь, изменение состояний которой происходит в определенные фиксированные моменты времени.

Цепью Маркова с непрерывным временем называют цепь, изменение состояний которой происходит в любые случайные возможные моменты времени.

§2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

Определение. Однородной называют цепь Маркова, если условная вероятность

(переход из состояния в состоянии ) не зависит от номера испытания. Поэтому вместо пишут просто .

Пример 1. Случайное блуждание. Пусть на прямой

в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью – на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание − пример однородной цепи Маркова с дискретным временем.

по себе, а отчасти рассматриваем мы ее из-за того, что ее изложение не требует введения большого количества новых терминов.

Рассмотрим задачу об осле, стоящем точно между двумя копнами: соломы ржи и соломы пшеницы (рис. 10.5).

Осел стоит между двумя копнами: "Рожь" и "Пшеница" (рис. 10.5). Каждую минуту он либо передвигается на десять метров в сторону первой копны (с вероятностью ), либо в сторону второй копны (с вероятностью ), либо остается там, где стоял (с вероятностью ); такое поведение называется одномерным случайным блужданием. Будем предполагать, что обе копны являются "поглощающими" в том смысле, что если осел подойдет к одной из копен, то он там и останется. Зная расстояние между двумя копнами и начальное положение осла, можно поставить несколько вопросов, например: у какой копны он очутится с большей вероятностью и какое наиболее вероятное время ему понадобится, чтобы попасть туда?


Рис. 10.5.

Чтобы исследовать эту задачу подробнее, предположим, что расстояние между копнами равно пятидесяти метрам и что наш осел находится в двадцати метрах от копны "Пшеницы". Если места, где можно остановиться, обозначить через ( - сами копны), то его начальное положение можно задать вектором -я компонента которого равна вероятности того, что он первоначально находится в . Далее, по прошествии одной минуты вероятности его местоположения описываются вектором , а через две минуты - вектором . Ясно, что непосредственное вычисление вероятности его нахождения в заданном месте по прошествии минут становится затруднительным. Оказалось, что удобнее всего ввести для этого матрицу перехода .

Пусть - вероятность того, что он переместится из в за одну минуту. Например, и . Эти вероятности называются вероятностями перехода , а -матрицу называют матрицей перехода . Заметим, что каждый элемент матрицы неотрицателен и что сумма элементов любой из строк равна единице. Из всего этого следует, что - начальный вектор -строка, определенный выше, местоположение осла по прошествии одной минуты описывается вектором-строкой , а после минут - вектором . Другими словами, -я компонента вектора определяет вероятность того, что по истечении минут осел оказался в .

Можно обобщить эти понятия. Назовем вектором вероятностей вектор -строку, все компоненты которого неотрицательны и дают в сумме единицу. Тогда матрица перехода определяется как квадратная матрица , в которой каждая строка является вектором вероятностей. Теперь можно определить цепь Маркова (или просто цепь) как пару , где есть - матрица перехода , а есть - вектор -строка. Если каждый элемент из рассматривать как вероятность перехода из позиции в позицию , а - как начальный вектор вероятностей, то придем к классическому понятию дискретной стационарной цепи Маркова , которое можно найти в книгах по теории вероятностей (см. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир. 1967) Позиция обычно называется состоянием цепи . Опишем различные способы их классификации.

Нас будет интересовать следующее: можно ли попасть из одного данного состояния в другое, и если да, то за какое наименьшее время. Например, в задаче об осле из в можно попасть за три минуты и вообще нельзя попасть из в . Следовательно, в основном мы будем интересоваться не самими вероятностями , а тем, положительны они или нет. Тогда появляется надежда, что все эти данные удастся представить в виде орграфа , вершины которого соответствуют состояниям, а дуги указывают на то, можно ли перейти из одного состояния в другое за одну минуту. Более точно, если каждое состояние представлено соответствующей ему вершиной).