Красота Оладьи Стрижки

С чем реагируют активные металлы. С чем реагируют металлы? − концентрированной серной кислотой

Атомы Кислорода могут образовывать два типа молекул: O 2 - кислород и O 3 - озон.

Явление существования нескольких простых веществ, образованных атомами одного химического элемента, называется алотропією. А простые вещества, образованные одним элементом, называют алотропними модификациями.

Следовательно, озон и кислород - это аллотропные модификации элемента Кислорода.

Свойства

Кислород

Озон

Формула соединения

O 2

O 3

Внешний вид в обычных условиях

Газ

Газ

Цвет

В парах кислород бесцветный. Жидкий - бледно-голубого цвета, а твердый - синего

Пары озона светло-синего цвета. Жидкий - синего цвета, а твердый представляет собой темно-фиолетовые кристаллы

Запах и вкус

Без запаха и вкуса

Резкий характерный запах (в малых концентрациях придает воздуху запах свежести)

Температура плавления

219 °С

192 °С

Температура кипения

183 °С

112 °С

Плотность при н. у.

1,43 г/л

2,14 г/л

Растворимость уводі

4 объемы кислорода в 100 объемах воды

45 объемов озона в 100 объемах воды

Магнитные свойства

Жидкий и твердый кислород - парамагнитные вещества, т.е. втягиваются в магнитное поле

Имеет диамагнитные свойства, то есть не взаимодействует с магнитным полем

Биологическая роль

Необходим для дыхания растений и животных (в смеси с азотом или инертным газом). Вдыхание чистого кислорода приводит к сильному отравлению

В атмосфере образует так называемый озоновый слой, который защищает биосферу от вредного воздействия ультрафиолетового излучения. Ядовитый

Химические свойства кислорода и озона

Взаимодействие кислорода с металлами

Молекулярный кислород - довольно сильный окислитель. Он окисляет практически все металлы (кроме золота и платины). Много металлов медленно окисляются на воздухе, но в атмосфере чистого кислорода сгорают очень быстро, при этом образуется оксид:

Однако некоторые металлы при горении образуют не оксиды, а пероксиды (в таких соединениях степень окисления Кислорода равна -1) или надпероксиди (степень окисления атома Кислорода - дробная). Примером таких металлов могут быть барий, натрий и калий:

Взаимодействие кислорода с неметаллами

Оксиген проявляет степень окисления -2 в соединениях, которые образованы со всеми неметаллами, кроме Фтора, Гелия, Неона и Аргона. Молекулы кислорода при нагревании непосредственно вступают во взаимодействие со всеми неметаллами, кроме галогенов и инертных газов. В атмосфере кислорода фосфор самовоспламеняется и некоторые другие неметаллы:

При взаимодействия кислорода с фтором образуется кислород фторид, а не фтор оксид, поскольку атом Фтора имеет большую электроотрицательности, чем атом Кислорода. Оксиген фторид - это газ бледно-желтого цвета. Его используют как очень сильный окислитель и фторувальний агент. В этой соединении степень окисления Кислорода равна +2.

В избытка фтора может образовываться диоксиген дифторид, в котором степень окисления Кислорода равна +1. По строению такая молекула похожа на молекулу водород пероксида.

Применение кислорода и озона. Значение озонового слоя

Кислород используют все аэробные живые существа для дыхания. В процессе фотосинтеза растения выделяют кислород и поглощают углекислый газ.

Молекулярный кислород применяют для так называемой интенсификации, то есть ускорение окислительных процессов в металлургической промышленности. А еще кислород используют для добывания пламени с высокой температурой. При горении ацетилена (С 2 Н 2) в кислороде температура пламени достигает 3500 °С. В медицине кислород применяют для облегчения дыхания больных. Его также используют в дыхательных аппаратах для работы людей в трудной для дыхания атмосфере. Жидкий кислород применяют как окислитель ракетного топлива.

Озон используют в лабораторной практике как очень сильный окислитель. В промышленности с его помощью дезинфицируют воду, поскольку ему присуща сильная окислительная действие, которая уничтожает различные микроорганизмы.

Пероксиды, надпероксиди и озонидов щелочных металлов применяют для регенерации кислорода в космических кораблях и на подводных лодках, Такое применение основано на реакции этих веществ с углекислым газом СО 2:

В природе озон содержится в высоких слоях атмосферы на высоте около 20-25 км, в так называемом озоновом слое, который защищает Землю от жесткого солнечного излучения. Уменьшение концентрации озона в стратосфере хотя бы на 1 может привести к тяжелым последствиям, таким рост числа онкологических заболеваний кожи в людей и животных, увеличение числа заболеваний, связанных с угнетением иммунной системы человека, замедление роста наземных растений, снижение скорости роста фитопланктона и т.д.

Без озонового слоя жизнь на планете было бы невозможным. Тем временем загрязнение атмосферы различными промышленными выбросами приводят к разрушению озонового слоя. Самыми опасными веществами для озона являются фреоны (их используют как хладагенты в холодильных машинах, а также как наполнители для баллончиков с дезодорантами) и отходы ракетного топлива.

Мировое сообщество очень обеспокоено в связи с образованием дыры в озоновом слое на полюсах нашей планеты, в связи с чем в 1987 г. был принят «Монреальский протокол по веществам, разрушающим озоновый слой», который ограничил использование веществ, вредных для озонового слоя.

Физические свойства веществ, образованных элементом Сульфуром

Атомы Серы, так же, как и Кислорода, могут образовывать различные аллотропные модификации (S ∞ ; S 12 ; S 8 ; S 6 ; S 2 и другие). При комнатной температуре сера находится в виде α -серы (или ромбической серы), что представляет собой желтые хрупкие кристаллы, без запаха, не растворимые в воде. При температуре свыше +96 °С происходит медленный переход α -серы в β -серу (или моноклінну серу), что представляет собой почти белые пластинки. Если расплавленную серу перелить в воду, происходит переохлаждение жидкой серы и образования желто-коричневой резино-подобной пластической серы, которая погодя снова превращается в а-серу. Сера кипит при температуре, равной +445 °С, образуя пары темно-бурого цвета.

Все модификации серы не растворяются в воде, зато достаточно хорошо растворяются в сероуглероде (CS 2 ) и некоторых других неполярных растворителях.

Применение серы

Главный продукт серной промышленности - это сульфатная кислота. На ее производство приходится около 60 % серы, которую добывают. В гумотехнічній промышленности серу используют для превращения каучука в высококачественную резину, то есть для вулканизации каучука. Сера - важнейший компонент любых пиротехнических смесей. Например, в спичечных головках содержится около 5 %, а в намазці на коробке - около 20 % серы по массе. В сельском хозяйстве серу используют для борьбы с вредителями виноградников. В медицине серу применяют при изготовлении различных мазей для лечения кожных заболеваний.


Под металлами подразумевают группу элементов, которая представлена в виде наиболее простых веществ. Они обладают характерными свойствами, а именно высокой электро- и теплопроводностью, положительным температурным коэффициентом сопротивления, высокой пластичностью и металлическим блеском.

Заметим, что из 118 химических элементов, которые были открыты на данный момент, к металлам следует относить:

  • среди группы щёлочноземельных металлов 6 элементов;
  • среди щелочных металлов 6 элементов;
  • среди переходных металлов 38;
  • в группе лёгких металлов 11;
  • среди полуметаллов 7 элементов,
  • 14 среди лантаноидов и лантан,
  • 14 в группе актиноидов и актиний,
  • Вне определения находятся бериллий и магний.

Исходя из этого, к металлам относятся 96 элементов. Рассмотрим подробней, с чем реагируют металлы. Поскольку на внешнем электронном уровне у большинства металлов находится небольшое количество электронов от 1 до 3-х, то они в большинстве своих реакций могут выступать в качестве восстановителей (то есть они отдают свои электроны другим элементам).

Реакции с наиболее простыми элементами

  • Кроме золота и платины, абсолютно все металлы реагируют с кислородом. Заметим также, что реакция при высоких температурах происходит с серебром, однако оксид серебра(II) при нормальных температурах не образуется. В зависимости от свойств металла, в результате реакции с кислородом образовываются оксиды, надпероксиды и пероксиды.

Приведем примеры каждого из химического образования:

  1. оксид лития – 4Li+O 2 =2Li 2 O;
  2. надпероксид калия – K+O 2 =KO 2 ;
  3. пероксид натрия – 2Na+O 2 =Na 2 O 2 .

Для того, чтобы получить оксид из пероксида, его нужно восстановить тем же металлом. Например, Na 2 O 2 +2Na=2Na 2 O. С малоактивными и со средними металлами подобная реакция будет происходить только при нагревании, к примеру: 3Fe+2O 2 =Fe 3 O 4 .

  • С азотом металлы могут реагировать только с активными металлами, однако при комнатной температуре может взаимодействовать только литий, образуя при этом нитриды – 6Li+N 2 =2Li 3 N, однако при нагревании происходит такая химическая реакция 2Al+N 2 =2AlN, 3Ca+N 2 =Ca 3 N 2 .
  • С серой, как и с кислородом, реагируют абсолютно все металлы, при этом исключением являются золото и платина. Заметим, что железо может взаимодействовать только при нагревании с серой, образовывая при этом сульфид: Fe+S=FeS
  • Только активные металлы могут реагировать с водородом. К ним относятся металлы группы IA и IIA, кроме берилия. Такие реакции могут осуществляться только при нагревании, образовывая гидриды.

    Так как степень окисления водорода считается?1, то металлы в данном случае выступают как восстановители: 2Na+H 2 =2NaH.

  • Реагируют с углеродом также самые активные металлы. В результате этой реакции образовываются ацетилениды или метаниды.

Рассмотрим, какие металлы реагируют с водой и что они дают в результате этой реакции? Ацетилены при взаимодействии с водой будут давать ацетилен, а метан получится в результате реакции воды с метанидами. Приведем примеры данных реакций:

  1. Ацетилен – 2Na+2C= Na 2 C 2 ;
  2. Метан - Na 2 C 2 +2H 2 O=2NaOH+C 2 H 2 .

Реакция кислот с металлами

Металлы с кислотами могут также реагировать по-разному. Со всеми кислотами реагируют только те металлы, которые в ряду стоят электрохимической активности металлов до водорода.

Приведем пример реакции замещения, которая показывает, с чем реагируют металлы. По-другому такая реакция называется окислительно-восстановительной: Mg+2HCl=MgCl 2 +H 2 ^.

Некоторые кислоты могут также взаимодействовать с металлами, которые стоят после водорода: Cu+2H 2 SO 4 =CuSO 4 +SO 2 ^+2H 2 O.

Заметим, что разбавленная такая кислота может реагировать с металлом по приведенной классической схеме: Mg+H 2 SO 4 =MgSO 4 +H 2 ^.

Восстановительные свойства - это главные химические свойства, характерные для всех металлов. Они проявляются во взаимодействии с самыми разнообразными окислителями, в том числе с окислителями из окружающей среды. В общем виде взаимодействие металла с окислителями можно выразить схемой:

Ме + Окислитель " Me (+Х),

Где (+Х) - это положительная степень окисления Ме.

Примеры окисления металлов.

Fe + O 2 → Fe(+3) 4Fe + 3O 2 = 2 Fe 2 O 3

Ti + I 2 → Ti(+4) Ti + 2I 2 = TiI 4

Zn + H + → Zn(+2) Zn + 2H + = Zn 2+ + H 2

  • Ряд активности металлов

    Восстановительные свойства металлов отличаются друг от друга. В качестве количественной характеристики восстановительных свойств металлов используют электродные потенциалы Е.

    Чем активнее металл, тем отрицательнее его стандартный электродный потенциал Е о.

    Металлы, расположенные в ряд по мере убывания окислительной активности, образуют ряд активности.

    Ряд активности металлов

    Me Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H 2 Cu Ag Au
    Me z+ Li + K + Ca 2+ Na + Mg 2+ Al 3+ Mn 2+ Zn 2+ Cr 3+ Fe 2+ Ni 2+ Sn 2+ Pb 2+ H + Cu 2+ Ag + Au 3+
    E o ,B -3,0 -2,9 -2,87 -2,71 -2,36 -1,66 -1,18 -0,76 -0,74 -0,44 -0,25 -0,14 -0,13 0 +0,34 +0,80 +1,50
    Металл, с более отрицательным значением Ео, способен восстановить катион металла с более положительным электродным потенциалом.

    Восстановление металла из раствора его соли с другим металлом с более высокой восстановительной активностью называется цементацией . Цементацию используют в металлургических технологиях.

    В частности, Cd получают, восстанавливая его из раствора его соли цинком.

    Zn + Cd 2+ = Cd + Zn 2+

  • 3.3. 1. Взаимодействие металлов с кислородом

    Кислород - это сильный окислитель. Он может окислить подавляющее большинство металлов, кроме Au и Pt . Металлы, находящиеся на воздухе, контактируют с кислородом, поэтому при изучении химии металлов всегда обращают внимание на особенности взаимодействия металла с кислородом.

    Всем известно, что железо во влажном воздухе покрывается ржавчиной - гидратировааным оксидом железа. Но многие металлы в компактном состоянии при не слишком высокой температуре проявляют устойчивость к окислению, так как образуют на своей поверхности тонкие защитные пленки. Эти пленки из продуктов окисления не позволяют окислителю контактировать с металлом. Явление образования на поверхности металла защитных слоев, препятствующих окислению металла, называется - пассивацией металла.

    Повышение температуры способствует окислению металлов кислородом . Активность металлов повышается в мелкораздробленном состоянии. Большинство металлов в виде порошка сгорает в кислороде.

  • s-металлы

    Наибольшую восстановительную активность проявляют s -металлы. Металлы Na, K, Rb Cs способны воспламеняться на воздухе, и их хранят в запаянных сосудах или под слоем керосина. Be и Mg при невысоких температурах на воздухе пассивируются. Но при поджигании лента из Mg сгорает с ослепительным пламенем.

    Металлы II А-подгруппы и Li при взаимодействии с кислородом образуют оксиды .

    2Ca + O 2 = 2CaO

    4 Li + O 2 = 2Li 2 O

    Щелочные металлы, кроме Li , при взаимодействии с кислородом образуют не оксиды, а пероксиды Me 2 O 2 и надпероксиды MeO 2 .

    2Na + O 2 = Na 2 O 2

    K + O 2 = KO 2

  • р-металлы

    Металлы, принадлежащие p -блоку на воздухе пассивируются.

    При горении в кислороде

    • металлы IIIА-подгруппы образуют оксиды типа Ме 2 О 3 ,
    • Sn окисляется до SnO 2 , а Pb - до PbO
    • Bi переходит в Bi 2 O 3 .
  • d-металлы

    Все d -металлы 4 периода окисляются кислородом . Легче всего окисляются Sc, Mn , Fe. Особенно устойчивы к коррозии Ti, V, Cr.

    При сгорании в кислороде из всех d

    При сгорании в кислороде из всех d -элементов 4 периода только скандий, титан и ванадий образуют оксиды, в которых Ме находится в высшей степени окисления, равной № группы. Остальные d-металлы 4 периода при сгорании в кислороде образуют оксиды, в которых Ме находится в промежуточных, но устойчивых степенях окисления.

    Типы оксидов, образуемых d-металлами 4 периода при горении в кислороде:

    • МеО образуют Zn, Cu, Ni, Co. (при Т>1000оС Cu образует Cu 2 O),
    • Ме 2 О 3 , образуют Cr, Fe и Sc,
    • МеО 2 - Mn, и Ti,
    • V образует высший оксид -V 2 O 5 .
    d -металлы 5 и 6 периодов, кроме Y, La, более всех других металлов устойчивы к окислению. Не реагируют с кислородом Au, Pt.

    При сгорании в кислороде d -металлов 5и 6 периодов, как правило, образуют высшие оксиды , исключение составляют металлы Ag, Pd, Rh, Ru.

    Типы оксидов, образуемых d-металлами 5и 6 периодов при горении в кислороде:

    • Ме 2 О 3 - образуют Y, La; Rh;
    • МеО 2 - Zr, Hf; Ir:
    • Me 2 O 5 - Nb, Ta;
    • MeO 3 - Mo, W
    • Me 2 O 7 - Tc, Re
    • МеО 4 - Os
    • MeO - Cd, Hg, Pd;
    • Me 2 O - Ag;
  • Взаимодействие металлов с кислотами

    В растворах кислот катион водорода является окислителем . Катионом Н + могут быть окислены металлы, стоящие в ряду активности до водорода , т.е. имеющие отрицательные электродные потенциалы.

    Многие металлы, окисляясь, в кислых водных растворах многие переходят в катионы Me z + .

    Анионы ряда кислот способны проявлять окислительные свойства, более сильные, чем Н + . К таким окислителям относятся анионы и самых распространенных кислот H 2 SO 4 и HNO 3 .

    Анионы NO 3 - проявляют окислительные свойства при любой их концентрации в растворе, но продукты восстановления зависят от концентрации кислоты и природы окисляемого металла.

    Анионы SO 4 2- проявляют окислительные свойства лишь в концентрированной H 2 SO 4 .

    Продукты восстановления окислителей: H + , NO 3 - , SO 4 2 -

    2Н + + 2е - = Н 2

    SO 4 2- из концентрированной H 2 SO 4 SO 4 2- + 2e - + 4 H + = SO 2 + 2 H 2 O

    (возможно также образование S, H 2 S)

    NO 3 - из концентрированной HNO 3 NO 3 - + e - + 2H + = NO 2 + H 2 O
    NO 3 - из разбавленной HNO 3 NO 3 - + 3e - + 4H + = NO + 2H 2 O

    (возможно также образование N 2 O, N 2 , NH 4 +)

    Примеры реакций взаимодействия металлов с кислотами

    Zn + H 2 SO 4 (разб.) " ZnSO 4 + H 2

    8Al + 15H 2 SO 4 (к.) " 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

    3Ni + 8HNO 3 (разб.) " 3Ni(NO 3) 2 + 2NO + 4H 2 O

    Cu + 4HNO 3 (к.) " Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • Продукты окисления металлов в кислых растворах

    Щелочные металлы образуют катион типа Ме + , s-металлы второй группы образуют катионы Ме 2+ .

    Металлы р-блока при растворении в кислотах образуют катионы, указанные в таблице.

    Металлы Pb и Bi растворяют только в азотной кислоте.

    Me Al Ga In Tl Sn Pb Bi
    Mez+ Al 3+ Ga 3+ In 3+ Tl + Sn 2+ Pb 2+ Bi 3+
    Eo,B -1,68 -0,55 -0,34 -0,34 -0,14 -0,13 +0,317

    Все d-металлы 4 периода, кроме Cu, могут быть окислены ионами Н + в кислых растворах.

    Типы катионов, образуемых d-металлами 4 периода:

    • Ме 2+ (образуют d-металлы начиная от Mn до Cu)
    • Ме 3+ (образуют Sc, Ti , V , Cr и Fe в азотной кислоте).
    • Ti и V образуют также катионы МеО 2+
    d -элементы 5 и 6 периодов более устойчивы к окислению, чем 4 d - металлы.

    В кислых растворах Н + может окислить: Y, La, Сd.

    В HNO 3 могут растворяться: Cd, Hg, Ag. В горячей HNO 3 растворяются Pd, Tc, Re.

    В горячей H 2 SO 4 растворяются: Ti, Zr, V, Nb, Tc, Re, Rh, Ag, Hg.

    Металлы: Ti, Zr, Hf, Nb, Ta, Mo, W обычно растворяют в смеси HNO 3 + HF.

    В царской водке (смеси HNO 3 + HCl) можно растворить Zr, Hf, Mo, Tc, Rh, Ir, Pt, Au и Os с трудом). Причиной растворения металлов в царской водке или в смеси HNO 3 + HF является образование комплексных соединений.

    Пример. Растворение золота в царской водке становится возможным из-за образования комплекса -

    Au + HNO 3 + 4HCl = H + NO + 2H 2 O

  • Взаимодействие металлов с водой

    Окислительные свойства воды обусловлены Н(+1).

    2Н 2 О + 2е - " Н 2 + 2ОН -

    Так как концентрация Н + в воде мала, окислительные свойства ее невысоки. В воде способны растворяться металлы с Е < - 0,413 B. Число металлов, удовлетворяющих этому условию, значительно больше, чем число металлов, реально растворяющихся в воде. Причиной этого является образование на поверхности большинства металлов плотного слоя оксида, нерастворимого в воде. Если оксиды и гидроксиды металла растворимы в воде, то этого препятствия нет, поэтому щелочные и щелочноземельные металлы энергично растворяются в воде. Все s -металлы, кроме Be и Mg легко растворяются в воде.

    2 Na + 2 HOH = H 2 + 2 OH -

    Na энергично взаимодействует с водой с выделением тепла. Выделяющийся Н 2 может воспламениться.

    2H 2 +O 2 =2H 2 O

    Mg растворяется только в кипящей воде, Ве защищен от окисления инертным нерастворимым оксидом

    Металлы р-блока - менее сильные восстановители, чем s .

    Среди р-металлов восстановительная активность выше у металлов IIIА-подгруппы, Sn и Pb - слабые восстановители, Bi имеет Ео > 0 .

    р-металлы при обычных условиях в воде не растворяются . При растворении защитного оксида с поверхности в щелочных растворах водой окисляются Al, Ga и Sn.

    Среди d-металлов водой окисляются при нагревании Sc и Mn, La, Y. Железо реагирует с водяным паром.

  • Взаимодействие металлов с растворами щелочей

    В щелочных растворах окислителем выступает вода .

    2Н 2 О + 2е - = Н 2 + 2ОН - Ео = - 0,826 B (рН =14)

    Окислительные свойства воды с ростом рН понижаются, из-за уменьшения концентрации Н + . Тем не менее, некоторые металлы, не растворяющиеся в воде, растворяются в растворах щелочей, например, Al, Zn и некоторые другие. Главная причина растворения таких металлов в щелочных растворах заключается в том, что оксиды и гидроксиды этих металлов проявляют амфотерность, растворяются в щелочи, устраняя барьер между окислителем и восстановителем.

    Пример. Растворение Al в растворе NaOH.

    2Al + 3H 2 O +2NaOH + 3H 2 O = 2Na + 3H 2

  • ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

    По химическим свойствам металлы подразделяют на:

    1 )Активные (щелочные и щелчноземельные металлы, Mg, Al, Zn и др.)

    2) Металлы средней активности (Fe, Cr, Mn и др.) ;

    3 )Малоактивные (Cu, Ag)

    4) Благородные металлы – Au, Pt, Pd и др.

    В реакциях - только восстановители. Атомы металлов легко отдают электроны внешнего (а некоторые – и предвнешнего) электронного слоя, превращаясь в положительные ионы. Возможные степени окисления Ме Низшая 0,+1,+2,+3 Высшая +4,+5,+6,+7,+8

    1.ВЗАИМОДЕЙСТВИЕ С НЕМЕТАЛЛАМИ

    1. С ВОДОРОДОМ

    Реагируют при нагревании металлы IA и IIA группы, кроме бериллия. Образуются твёрдые нестойкие вещества гидриды, остальные металлы не реагируют.

    2K + H₂ = 2KH (гидрид калия)

    Ca + H₂ = CaH₂

    2.С КИСЛОРОДОМ

    Реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. Щелочные металлы при нормальных условиях образуют оксиды, пероксиды, надпероксиды (литий – оксид, натрий – пероксид, калий, цезий, рубидий – надпероксид

    4Li + O2 = 2Li2O (оксид)

    2Na + O2 = Na2O2 (пероксид)

    K+O2=KO2 (надпероксид)

    Остальные металлы главных подрупп при нормальных условиях образуют оксиды со степенью окисления, равной номеру группы 2Сa+O2=2СaO

    2Сa+O2=2СaO

    Металлы побочных подрупп образуют оксиды при нормальных условиях и при нагревании оксиды разной степени окисления, а железо железную окалину Fe3O4 (Fe⁺²O∙Fe2⁺³O3)

    3Fe + 2O2 = Fe3O4

    4Cu + O₂ = 2Cu₂⁺¹O (красный) 2Cu + O₂ = 2Cu⁺²O (чѐрный);

    2Zn + O₂ = ZnO 4Cr + 3О2 = 2Cr2О3

    3. С ГАЛОГЕНАМИ

    галогениды (фториды, хлориды, бромиды, иодиды). Щелочные при нормальных условиях с F, Cl , Br воспламеняются:

    2Na + Cl2 = 2NaCl (хлорид)

    Щелочноземельные и алюминий реагируют при нормальных условиях:

    С a+Cl2= С aCl2

    2Al+3Cl2 = 2AlCl3

    Металлы побочных подгрупп при повышенных температурах

    Cu + Cl₂ = Cu⁺²Cl₂ Zn + Cl₂ = ZnCl₂

    2Fe + ЗС12 = 2Fe⁺³Cl3 хлорид железа (+3) 2Cr + 3Br2 = 2Cr⁺³Br3

    2Cu + I₂ = 2Cu⁺¹I (не бывает йодида меди (+2)!)

    4. ВЗАИМОДЕЙСТВИЕ С СЕРОЙ

    при нагревании даже у щелочных металлов, с ртутью при нормальных условиях. Реагируют все металлы, кроме золота и платины

    с серой сульфиды : 2K + S = K2S 2Li+S = Li2S ( сульфид )

    С a+S= С aS( сульфид ) 2Al+3S = Al2S3 Cu + S = Cu⁺²S (чѐрный )

    Zn + S = ZnS 2Cr + 3S = Cr2⁺³S3 Fe + S = Fe⁺²S

    5. ВЗАИМОДЕЙСТВИЕ С ФОСФОРОМ И АЗОТОМ

    протекает при нагревании (исключение: литий с азотом при нормальных условиях) :

    с фосфором – фосфиды: 3 Ca + 2 P =Са3 P 2,

    С азотом – нитриды 6Li + N2 = 3Li2N (нитрид лития) (н.у.) 3Mg + N2 = Mg3N2 (нитрид магния) 2Al + N2 = 2A1N 2Cr + N2 = 2CrN 3Fe + N2 = Fe₃⁺²N₂¯³

    6. ВЗАИМОДЕЙСТВИЕ С УГЛЕРОДОМ И КРЕМНИЕМ

    протекает при нагревании:

    С углеродом образуются карбиды С углеродом реагируют только наиболее активные металлы. Из щелочных металлов карбиды образуют литий и натрий, калий, рубидий, цезий не взаимодействуют с углеродом:

    2Li + 2C = Li2C2, Са + 2С = СаС2

    Металлы – d-элементы образуют с углеродом соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC – используются для получения сверхтвёрдых сталей.

    с кремнием – силициды: 4Cs + Si = Cs4Si,

    7. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ВОДОЙ:

    С водой реагируют металлы, стоящие до водорода в электрохимическом ряду напряжений Щелочные и щелочноземельные металлы реагируют с водой без нагревания, образуя растворимые гидроксиды(щелочи) и водород, алюминий (после разрушения оксидной пленки - амальгирование), магний при нагревании, образуют нерастворимые основания и водород.

    2Na + 2HOH = 2NaOH + H2
    С a + 2HOH = Ca(OH)2 + H2

    2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2

    Остальные металлы реагируют с водой только в раскаленном состоянии, образуя оксиды (железо – железную окалину)

    Zn + Н2O = ZnO + H2 3Fe + 4HOH = Fe3O4 + 4H2 2Cr + 3H₂O = Cr₂O₃ + 3H₂

    8 С КИСЛОРОДОМ И ВОДОЙ

    На воздухе железо и хром легко окисляется в присутствии влаги (ржавление)

    4Fe + 3O2 + 6H2O = 4Fe(OH)3

    4Cr + 3O2 + 6H2O = 4Cr(OH)3

    9. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ С ОКСИДАМИ

    Металлы (Al, Mg,Са), восстанавливают при высокой температуре неметаллы или менее активные металлы из их оксидов → неметалл или малоактивный металл и оксид (кальцийтермия, магнийтермия, алюминотермия)

    2Al + Cr2O3 = 2Cr + Al2O3 ЗСа + Cr₂O₃ = ЗСаО + 2Cr (800 °C) 8Al+3Fe3O4 = 4Al2O3+9Fe (термит) 2Mg + CО2 = 2MgO + С Mg + N2O = MgO + N2 Zn + CО2 = ZnO+ CO 2Cu + 2NO = 2CuO + N2 3Zn + SО2 = ZnS + 2ZnO

    10. С ОКСИДАМИ

    Металлы железо и хром реагируют со оксидами, уменьшая степень окисления

    Cr + Cr2⁺³O3 = 3Cr⁺²O Fe+ Fe2⁺³O3 = 3Fe⁺²O

    11. ВЗАИМОДЕЙСТВИЕ МЕТАЛЛОВ СО ЩЕЛОЧАМИ

    Со щелочами взаимодействуют только те металлы, оксиды и гидроксиды которых обладают амфотерными свойствами ((Zn, Al, Cr(III), Fe(III) и др. РАСПЛАВ → соль металла + водород.

    2NaOH + Zn → Na2ZnO2 + H2 (цинкат натрия)

    2Al + 2(NaOH · H2O) = 2NaAlO2 + 3H2
    РАСТВОР → комплексная соль металла + водород.

    2NaOH + Zn0 + 2H2O = Na2 + H2 (тетрагидроксоцинкат натрия) 2Al+2NaOH + 6H2O = 2Na+3H2

    12. ВЗАИМОДЕЙСТВИЕ С КИСЛОТАМИ (КРОМЕ HNO3 и Н2SО4 (конц.)

    Металлы, стоящие в электрохимическом ряду напряжений металлов левее водорода, вытесняют его из разбавленных кислот → соль и водород

    Запомни! Азотная кислота никогда не выделяет водород при взаимодействии с металлами.

    Мg + 2НС1 = МgСl2 + Н2
    Al + 2НС1 = Al⁺³Сl₃ + Н2

    13. РЕАКЦИИ С СОЛЯМИ

    Активные металлы вытесняют из солей менее активные. Восстановление из растворов:

    CuSO4 + Zn = Zn SO4 + Cu

    FeSO4 + Cu = РЕАКЦИИ НЕТ

    Mg + CuCl2(pp) = MgCl2 + С u

    Восстановление металлов из расплавов их солей

    3Na+ AlCl₃ = 3NaCl + Al

    TiCl2 + 2Mg = MgCl2 +Ti

    Металлы групп В реагируют с солями, понижая степень окислениЯ

    2Fe⁺³Cl3 + Fe = 3Fe⁺²Cl2

    По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

    Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
    Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
    Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

    4Li + O 2 = 2Li 2 O;
    2Na + O 2 = Na 2 O 2

    Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

    2Mg + O 2 = t 2MgO.

    Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
    Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

    Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
    Активные металлы бурно взаимодействуют с водой при комнатной температуре:

    2Li + 2H 2 O = 2LiOH + H 2 ;
    Ba + 2H 2 O = Ba(OH) 2 + H 2 .

    Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

    Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

    При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

    3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

    Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

    Ca + 2HCl = CaCl 2 + H 2 ;
    2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

    Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

    Вам необходимо включить JavaScript, чтобы проголосовать