Красота Оладьи Стрижки

Проект по физике на тему нанотехнологии. Нанотехнологии. Нанотехнологии, которые мы используем в жизни

Цель исследования- практическое применение нанотехнологии.

Задачи:

    Собрать и изучить информацию о нанотехнологиях.

    Разработать анкету опроса.

    Провести анкетирование среди учащихся 5,7,10 классов МКОУ «Тегульдетская СОШ»

    Проанализировать полученные результаты, сформулировать выводы.

The aim of the work is to show the practical use of nanotechnology.

Objectives:

    To collect and study information about nanotechnology.

    To work out a questionnaire.

    To carry out interrogation of students from our school.

    To analyze the results, to make the conclusion.

Что такое нанотехнология?

За несколько прошедших десятилетий были найдены новые и более продвинутые энергетические технологии в области науки и инженерии с целью улучшения жизни во всем мире. Чтобы заставить следующие технологии пойти вперед технологий текущего времени, ученые и инженеры развивали новую область науки под названием нанотехнология.

Нанотехнология определяется, как наука и технология разработки электронных схем и устройств из отдельных атомов и молекул; или отрасль разработок, которая имеет дело с вещами меньше, чем 100 нанометров. Нанометр (нм) равняется одной миллиардной части метра, примерная ширина трех или четырех атомов. Для сравнения– средняя ширина человеческого волоса приблизительно 80,000 нанометров, а величина одной частицы составляет приблизительно 100 нанометров в ширину. Приставка nano - возникла от греческого слова nanos - означая "карлик ". Первоначально учёные использовали приставку, чтобы обозначить что-то очень маленькое, например «нанопланктон». Термин «нанотехнология» также часто используется для описания междисциплинных областей науки, посвященных исследованию и использованию явления наноразмера.


История.
История нанотехнологии началась в 50-ых и 60-ых годах 20 века, когда большинство инженеров мыслило масштабно. Это было время больших автомобилей, больших самолетов, больших мировых нефтяных танкеров, больших небоскребов и больших планов относительно отправления людей в космос. Огромные небоскрёбы, такие как Всемирный торговый центр были построены в главных городах мира. В то время как другие исследователи сосредоточились на создании мелких предметов. Изобретение транзистора в 1947 году и первой интегральной схемы в 1959 году начало эру электроники в миниатюре. Именно эти мелкие устройства создали основу для возникновения больших устройств, таких как космические корабли. После успешного расщепления атома перед Второй мировой войной, физики попытались найти частицы, из которых сделаны атомы, и силы, которые соединяют их в одно. В то же самое время химики работали над тем, чтобы объединить атомы в новые виды молекул и имели большой успех в преобразовании сложных молекул нефти во все виды пригодной пластмассы.

Наноматериалы.

Наноматериалы-это материалы, которые обладают уникальными способностями.Они могут пропускать электричество и тепло разными способами, менять цвет (частицы золота могут быть красными, синими, золотыми в зависимости от их размера). Эти особенные свойства уже используются для создания мобильных телефонов, компьютерных чипов.

Цель учёных использовать нанотехнологии для создания новых приборов, которые будут прочнее, легче, быстрее и эффективнее.

Наномедецина.

Наномедицина - область медицинского исследования, которое стремится использовать инструменты из области нанотехнологий для здоровья. Ученые говорят о том, что физические, химические, и биологические свойства материалов в наноразмере глобально отличаются от свойств тех же материалов в крупном размере (в обычном размере). Например, нанотехнология могла бы обеспечить новые технологии изготовления лекарств и новые пути доставки лекарства в ранее недоступные места в теле человека, таким образом, расширяя их потенциал. Маленькие датчики, которые диагностируют болезни в теле намного быстрее, чем существующие диагностические инструменты; это одни из многообещающих областей исследования.

Нанотехнологии это хорошо или плохо?


Нанотехнологии представляют потенциальную пользу для человечества, но также приносят серьёзные опасности. Некоторые наноматериалы являются токсичными для мышц и клеток человека.

В отличие от крупнейших частиц, наноматериалы могут быть поглощены митохондриями клеток и клеточного ядра. Исследования показали, что наноматериалы могут привести к потенциальной мутации и вызвать серьезные структурные повреждения митохондрий, в результате чего даже гибели клетки. Уместно внимательно изучить риски возможной токсичности наночастиц и других продуктов технологии, наибольшая опасность исходит от вредоносного или неразумного использования молекулярного производства.

What is Nanotechnology?

Over the past few decades, the development of new and more advanced energy technologies with the capability of improving life all over the world have been sought in the fields of science and engineering. In order to make the next leap forward from the current generation of technology, scientists and engineers have been developing a new field of science called Nanotechnology.

Nanotechnology is defined as the science and technology of building electronic circuits and devices from single atoms and molecules, or the branch of engineering that deals with things smaller than 100 nanometers. A nanometer (nm)is one billionth of a meter, roughly the width of three or four atoms. For scale comparison, the average human hair is about 80,000nanometers wide, and a single virus particle is about 100 nanometers in width. The prefix nano-comes from the Greek word nanos, meaning “dwarf”. Scientists originally used the prefix just to indicate “very small”, as in “nanoplankton”, but it now means one-billionth, just as milli-means one –thousandth, and micro-means one-millions.

The term Nanotechnology is also often used to describe the interdisciplinary fields of science devoted to the study and use of nanoscalephenomena.

History.

The story of nanotechnology begins in the 1950s and 1960s, when most engineers were thinking big, not small. This was the era of big cars, big atomic bombs, big jets, and big plans for sending people into outer space. Huge skyscrapers, like the World Trade Centre were built in major cities of the world. The world’s largest oil tankers, cruise ships, bridges, interstate highways, and electric power plants are all products of this era.

Other researches, however, focused on making things smaller. The invention of the transistor in 1947 and the first integrated circuit (IC) in 1959 launched an era of electronics miniaturization. It was these small devices that made large devices, such as spaceships, possible.

As electronics engineers focused on making things smaller, engineers and scientists from other fields also turned their focus to small things-atoms and molecules. After successfully splitting the atom in the years before World War II, physicists struggled to understand more about the particles from which atoms are made, and the forces that bind them together. At the same time, chemists worked to combine atoms into new kinds of molecules, and had great success converting the complex molecules of petroleum into all sorts of useful plastics.

Nanomaterials.

Nanomaterials-materials having unique properties arising from their nanoscale dimensions- can be stronger or lighter, or conduct heat or electricity in a different way. They can even change colour; particles of gold can appear red, blue or gold, depending on their size. These special attributes are already being used in a number of ways, such as in the manufacture of computer chips, CDs and mobile phones. Researches are progressively finding out more about the nonascale world of aim to use nanotechnologies to create new devices that are faster, lighter, stronger or more efficient.

Nanomedicine.

Nanomedcine is an area of biomedical research that seeks to use tools from the field of nanotechnology to improve health. Scientists say that the physical, chemical, and biological properties of materials at the nanoscale differ in fundamental and valuable ways from the properties of larger-sized matter. For example, nanotechnology could provide new formulations and new routes to deliver drugs to previously inaccessible sites in the body, thereby broadening a drug’s potential. Tiny sensors that detect diseases in the body far earlier than existing diagnostic tools, and pumps the size of molecules implanted to deliver lifesaving medications precisely where they are needed, are among the promising areas of research.

Is nanotechnology good or bad?

Nanotechnology offers potential benefits to mankind, but also brings severe dangers. Some nanomaterials have proved toxic to human tissue and cell cultures. Unlike large particles, nanomaterials may be absorbed by cell mitochondria and the cell nucleus. Studies have demonstrated that nanomaterials may cause potential DNA mutation and induce major structural damage to mitochondria, even resulting in cell death.

Although nanotechnology dates from the 1950s, the biggest changes have occurred in just the past few years. In the space of just a few years governments around the world have launched new research programs.

The more advanced nanotechnology developments expected in the next 10 years will most likely include solutions to repair and rearrange living cells.






Проблемные вопросы. 1. Кто вёл термин Нанотехнологиях? Кто вёл термин Нанотехнологиях? Кто вёл термин Нанотехнологиях? 2. Каков размер нано робота? Каков размер нано робота? Каков размер нано робота? 3. Какой вред принесёт нанотехнологии людям? Какой вред принесёт нанотехнологии людям? Какой вред принесёт нанотехнологии людям? 4. Смогут ли нанотехнологии излечать самые сложные болезни? Смогут ли нанотехнологии излечать самые сложные болезни? Смогут ли нанотехнологии излечать самые сложные болезни? 5. Что будет в будущем? Что будет в будущем? Что будет в будущем?




Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Приставка нано обозначает Приставка нано обозначает =0, одна миллиардная =0, одна миллиардная Первое представление нанотехнологий






Вред нанотехнологий 15 января SA объявила, что искусственно созданные наночастицы могут представлять опасность для здоровья человека, поэтому содержащие их продукты впредь не смогут получать сертификат SA. Это относится в первую очередь к санитарно- гигиеническим и косметическим средствам (солнцезащитной косметике, кремам от морщин), но касается также пищевых продуктов и одежды. 15 января SA объявила, что искусственно созданные наночастицы могут представлять опасность для здоровья человека, поэтому содержащие их продукты впредь не смогут получать сертификат SA. Это относится в первую очередь к санитарно- гигиеническим и косметическим средствам (солнцезащитной косметике, кремам от морщин), но касается также пищевых продуктов и одежды. "Запрещенными" являются материалы, если они содержат частицы размером менее 125 нанометров (нанометр, напомним, - одна миллиардная метра), а также если средний размер их частиц составляет менее 200 нанометров. "Запрещенными" являются материалы, если они содержат частицы размером менее 125 нанометров (нанометр, напомним, - одна миллиардная метра), а также если средний размер их частиц составляет менее 200 нанометров.




Нановзрывчатка Совместная команда ученых из Миссурийского университета (Колумбия) и армии США разработали особую нановзрывчатку, способную порождать сверхзвуковую ударную волну, которая поможет доставлять лекарственные вещества прямо в раковые клетки, не повреждая при этом здоровые клетки организма. Совместная команда ученых из Миссурийского университета (Колумбия) и армии США разработали особую нановзрывчатку, способную порождать сверхзвуковую ударную волну, которая поможет доставлять лекарственные вещества прямо в раковые клетки, не повреждая при этом здоровые клетки организма. Такая взрывчатка помещается в специальный прибор, который можно будет использовать для облегчения доставки лекарственного препарата прямо в раковые клетки или клетки вируса иммунодефицита человека (ВИЧ). Такая взрывчатка помещается в специальный прибор, который можно будет использовать для облегчения доставки лекарственного препарата прямо в раковые клетки или клетки вируса иммунодефицита человека (ВИЧ).


Нанотехнологии - это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда необыкновенные свойства. Считается, что нанотехнология является ключевой технологией 21- го века и охватывает процессы, происходящие с частицами в десятки тысяч раз меньше миллиметра. Эти частицы называют нанометрами. Для сравнения: сантиметр - сотая доля метра, миллиметр - тысячная. А нано обозначает миллиардную долю. То есть, нанометр - миллиардная часть метра. В нанометрах измеряются молекулы и вирусы. Рождение новой эпохи нанотехнологий многие связывают с 1981 годом - когда немецкие физики Герд Бинниг и Генрих Рорер создали зондовый туннельный микроскоп, позволяющий не только видеть, но и переносить с места на место отдельные атомы. Нанотехнологии - это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда необыкновенные свойства. Считается, что нанотехнология является ключевой технологией 21- го века и охватывает процессы, происходящие с частицами в десятки тысяч раз меньше миллиметра. Эти частицы называют нанометрами. Для сравнения: сантиметр - сотая доля метра, миллиметр - тысячная. А нано обозначает миллиардную долю. То есть, нанометр - миллиардная часть метра. В нанометрах измеряются молекулы и вирусы. Рождение новой эпохи нанотехнологий многие связывают с 1981 годом - когда немецкие физики Герд Бинниг и Генрих Рорер создали зондовый туннельный микроскоп, позволяющий не только видеть, но и переносить с места на место отдельные атомы.


Отличительная особенность нанотехнологий Историческая справка Нанороботы Сфера применения нанороботов(в настоящее время) Фундаментальные положения Атомно-силовая микроскопия Наночастицы Самоорганизация наночастиц Перспективные науки Индустрия нанотехнологий Нанотехнологии в медицине Патенты в области нанотехнологий и объемы инвестиций Научный фонд США и его инвестиции в нанотехнологии


В чем же отличие нанотехнологий от остальных? Нанотехнологии- это междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомарной структурой путём контролируемого манипулирования отдельными атомами и молекулами. Часто употребляемое определение нанотехнологий как комплекса методов работы с объектами размером менее 100 нанометров недостаточно точно описывает как объект, так и отличие нанотехнологии от традиционных технологий и научных дисциплин Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул, квантовые эффекты.


Историческая справка Многие источники, в первую очередь англоязычные, первое упоминание методов, которые впоследствии будут названы нанотехнологией, связывают с известным выступлением Ричарда Фейнмана, сделанным им в 1959 году в Калифорнийском технологическом институте на ежегодной встрече Американского физического общества. Ричард Фейнман предположил, что возможно механически перемещать одиночные атомы, при помощи манипулятора соответствующего размера, по крайней мере, такой процесс не противоречил бы известным на сегодняшний день физическим законам. Этот манипулятор он предложил делать следующим способом. Необходимо построить механизм, создававший бы свою копию, только на порядок меньшую. Созданный меньший механизм должен опять создать свою копию, опять на порядок меньшую и так до тех пор, пока размеры механизма не будут соизмеримы с размерами порядка одного атома. При этом необходимо будет делать изменения в устройстве этого механизма, так как силы гравитации, действующие в макромире будут оказывать все меньшее влияние, а силы межмолекулярных взаимодействий и Ван-дер-Ваальсовы силы будут все больше влиять на работу механизма. Последний этап полученный механизм соберёт свою копию из отдельных атомов. Принципиально число таких копий неограниченно, можно будет за короткое время создать любое число таких машин. Эти машины смогут таким же способом, поатомной сборкой собирать макровещи. Это позволит сделать вещи на порядок дешевле таким роботам (нанороботам) нужно будет дать только необходимое количество молекул и энергию, и написать программу для сборки необходимых предметов. До сих пор никто не смог опровергнуть эту возможность, но и никому пока не удалось создать такие механизмы. Принципиальный недостаток такого робота невозможность создания механизма из одного атома. Впервые термин «нанотехнология» употребил Норио Танигути в 1974 году. Он назвал этим термином производство изделий размером несколько нанометров. Центральное место в его исследованиях играли математические расчёты, с помощью которых можно было проанализировать работу устройства размерами в несколько нанометров.


Нанороботы Наноро́боты, или нанобо́ты роботы, размером сопоставимые с молекулой (менее 10 нм), обладающие функциями движения, обработки и передачи информации, исполнения программ. На данный момент (2009) реальных нанороботов создать не удалось. Некоторыми учёными утверждается, что уже созданы некоторые компоненты нанороботов. Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер. Идея нанороботов широко используется в современной фантастике. Другие определения описывают наноробота как машину, способную точно взаимодействовать с наноразмерными объектами или способной манипулировать объектами в наномасштабе. Вследствие этого, даже крупные аппараты, такие как атомно-силовой микроскоп можно считать нанороботами, так как он производит манипуляции объектами на наноуровне. Кроме того, даже обычных роботов, которые могут перемещаться с наноразмерной точностью можно считать нанороботами. Нанороботы находятся в основном в научно-исследовательской стадии создания, однако, уже были созданы некоторые примитивные прототипы молекулярных машин. Например, датчик, имеющий переключатель около 1,5 нм, способный вести подсчет отдельных молекул в химических образцах. Первое полезное применение наномашин, если они появятся, планируется в медицинских технологиях, где они могут быть использованы для выявления и уничтожения раковых клеток. Также они могут обнаруживать токсичные химические вещества в окружающей среде и измерять уровень их концентрации. Недавно университет Райса продемонстрировал наноустройства для использования их в регулировании химических процессов в современных автомобилях.


Сфера применения Ранняя диагностика рака и целенаправленная доставка лекарств в раковые клетки Биомедицинский инструментарий Хирургия Фармакокинетика Мониторинг больных диабетом Производство посредством молекулярной сборки нанороботами устройства из отдельных молекул по его чертежам Военное применение в качестве средств наблюдения и шпионажа, а также в качестве оружия Космические исследования и разработки (например, зонды фон Неймана, способные нести на околоземной орбите пушку Гаусса)




Атомно-силовая микроскопия Одним из методов, используемых для изучения нанообъектов, является атомно- силовая микроскопия. С помощью атомно-силового микроскопа (АСМ) можно не только увидеть отдельные атомы, но также избирательно воздействовать на них, в частности, перемещать атомы по поверхности. Учёным уже удалось создать двумерные наноструктуры на поверхности, используя данный метод. Например, в исследовательском центре компании IBM, последовательно перемещая атомы ксенонa на поверхности монокристалла никеля, сотрудники смогли выложить три буквы логотипа компании, используя 35 атомов ксенона. При выполнении подобных манипуляций возникает ряд технических трудностей. В частности, требуется создание условий сверхвысокого вакуума, необходимо охлаждать подложку и микроскоп до сверхнизких температур (4-10 К), поверхность подложки должна быть атомарно чистой и атомарно гладкой, для чего применяются специальные методы её приготовления. Охлаждение подложки производится с целью уменьшения поверхностной диффузии осаждаемых атомов.


Наночастицы Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 1000(свыше 100 нанометров наночастицами можно назвать их условно) нанометров обычно называют «наночастицами ». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства. Нанообъекты делятся на 3 основных класса: трёхмерные частицы получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок итд, двумерные объекты плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д, одномерные объекты вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д. Также существуют нанокомпозиты материалы полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике.


Самоорганизация наночастиц Одним из важнейших вопросов, стоящих перед нанотехнологией как заставить молекулы группироваться определенным способом, самоорганизовываться, чтобы в итоге получить новые материалы или устройства. Этой проблемой занимается раздел химии супрамолекулярная химия. Она изучает не отдельные молекулы, а взаимодействия между молекулами, которые, организовываясь определенным способом, могут дать новые вещества. Обнадеживает то, что в природе действительно существуют подобные системы и осуществляются подобные процессы. Так, известны биополимеры, способные организовываться в особые структуры. Один из примеров белки, которые не только могут сворачиваться в глобулярную форму, но и образовывать комплексы структуры, включающие несколько молекул протеинов (белков). Уже сейчас существует метод синтеза, использующий специфические свойства молекулы ДНК. Берется комплементарная ДНК, к одному из концов подсоединяется молекула А или Б. Имеем 2 вещества: -- --А и ----Б, где ---- условное изображение одинарной молекулы ДНК. Теперь, если смешать эти 2 вещества, между двумя одинарными цепочками ДНК образуются водородные связи, которые притянут молекулы А и Б друг к другу. Условно изобразим полученное соединение: ====АБ. Молекула ДНК может быть легко удалена после окончания процесса.


Науки, появившиеся благодаря нанотехнологиям Наномедицина (слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры) Наноэлектроника (область электроники, занимающаяся разработкой физических и технологических основ создания интегральных электронных схем с характерными топологическими размерами элементов менее 100 нм.) Наноинжене́рия (научно-практическая деятельность человека по конструированию, изготовлению и применению наноразмерных объектов или структур, а также объектов или структур, созданных методами нанотехнологий.) Наноионика (свойства, явления, эффекты, механизмы процессов и приложения, связанные с быстрым ионным транспортом в твердотельных наносистемах.) Наноробототехника (прикладная наука, занимающаяся разработкой автоматизированных технических систем(роботов) в области нанотехнологий.) Нанохимия (наука, которая занимается изучением свойств различных наноструктур, а также разработкой новых способов их получения, изучения и модификации)


Нанотехнологии в России Государственная корпорация «Российская корпорация нанотехнологий» (РОСНАНО) учреждена федеральным законом 139-ФЗ 19 июля 2007 года для «реализации государственной политики в сфере нанотехнологий, развития инновационной инфраструктуры в сфере нанотехнологий, реализации проектов создания перспективных нанотехнологий и наноиндустрии». Корпорация решает эту задачу, выступая соинвестором в нанотехнологических проектах со значительным экономическим или социальным потенциалом. Финансовое участие корпорации на ранних стадиях проектов снижает риски ее партнеров – частных инвесторов. Корпорация участвует в создании объектов нанотехнологической инфраструктуры, например, центров коллективного пользования, бизнес-инкубаторов и фондов раннего инвестирования. РОСНАНО выбирает приоритетные направления инвестирования на основе долгосрочных прогнозов развития, к разработке которых привлекаются ведущие российские и мировые эксперты. На деятельность Корпорации Правительством Российской Федерации выделено 130 млрд. рублей, которые были внесены в уставный капитал РОСНАНО в ноябре 2007 года. В июне 2008 года временно-свободные средства были размещены на счетах в 8 коммерческих банках в соответствии с рекомендациями Министерства финансов РФ. Органами управления являются наблюдательный совет, правление и генеральный директор. В сентябре 2008 года генеральным директором Российской корпорации нанотехнологий назначен Анатолий Борисович Чубайс.




Министерство образования Республики Мордовия

ГБОУ РМ СПО (ССУЗ) «Саранский техникум пищевой и перерабатывающей промышленности»


ИНФОРМАЦИОННЫЙ ПРОЕКТ

по физике на тему:

студент гр. № 16 Романов Александр

Руководитель:

преподаватель физики

Рязина Светлана Егоровна

Саранск 2012

Объект исследования: «Н анотехнологии»

Цель исследования:

Раскрыть основные направления развития нанотехнологий, показать положительные и отрицательные аспекты исследуемой области.

Задачи исследования:


  • Выяснить по каким основным направлениям развивается данная область.

  • Рассмотреть области применения нанотехнологий.

  • Исследовать влияние нанотехнологий на экологию.
Методы исследования: анализ научной литературы по теме, анализ информации СМИ, обобщение, систематизация.


5. Применение нанотехнологий


  • медицина

  • промышленность

  • сельское хозяйство

  • биология

  • освоение космоса

  • военное дело

  • пищевая промышленность
6. Сколько стоят нанотехнологии

7. Безопасность нанотехнологий

8. Нанотехнологии и экология

9. Нанотехнологии уже давно вокруг нас

10.Вывод

11. Мордовия территория НАНО

1.Нанотехнологии: место среди других наук

Слышали ли вы о нанотехнологиях? Я думаю да, и неоднократно. Нанотехнологии - высокотехнологичная отрасль, работающая с отдельными атомами и молекулами. Такая сверхточность позволяет на качественно новом уровне использовать законы природы на благо человека. Разработки в области нанотехнологий находят применение практически в любой отрасли: в медицине, машиностроении, геронтологии, промышленности, сельском хозяйстве, биологии, кибернетике, электронике, экологии. Нанотехнологии занимают особое место среди других наук. С помощью нанотехнологии возможно осваивать космос очищать нефть, победить многие вирусы, создавать роботов, защищать природу, построить сверхбыстрые компьютеры. Можно сказать, что развитие нанотехнологий в XXI веке изменит жизнь человечества больше, чем освоение письменности, паровой машины или электричества. Наномир сложен и пока еще сравнительно мало изучен, и все же не столь далек от нас, как это казалось несколько лет назад. В своей работе я постараюсь популярно объяснить сущность нанотехнологий и рассказать о достижениях в этой отрасли науки. Так как считаю ее наиболее актуальной и востребованной на сегодняшний день.

Что же такое нанотехнологии и «с чем их едят»

Приставка «нано» (по-гречески- «карлик») означает «одна миллиардная доля». То есть один нанометр (1 нм)- одна миллиардная доля метра (10–9 м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по размеру как копеечная монета и Земной шар. Или уменьшим слона до размеров микроба (5000 нм) - тогда блоха у него на спине станет величиной как раз в нанометр. А если бы рост человека вдруг уменьшился до нанометра, то мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной 170 километрам. Нанометрами измеряются лишь самые примитивные существа - вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в 10 нм - такие размеры имеют сложные молекулы белков. Простые молекулы в десятки раз меньше. Величина атомов - несколько ангстрем (1 ангстрем = 0,1 нм). Например, диаметр атома кислорода - 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов - от сотен до едениц нанометров. Именно в наномире идут процессы фундаментальной важности - совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Вообще говоря, нанотехнологии не являются самостоятельным разделом науки. Скорее, это именно комплекс прикладных технологий, фундаментальные основы которых изучаются в таких дисциплинах, как коллоидная химия, физика поверхности, квантовая механика, молекулярная биология и т. п. Что такое нано? Приставка «нано» («нанос» по-гречески - карлик) означает «одна миллиардная доля». Один нанометр (1 нм) – одна миллиардная доля метра (10Љ м). Как представить себе такую короткую дистанцию? Проще всего это сделать с помощью денег: нанометр и метр соотносятся по масштабу как копеечная монета и земной шар (кстати, если каждый житель Земли даст по монетке, этого вполне хватит, чтобы выложить цепочку вокруг экватора. Даже если некоторые, как обычно, пожадничают). Уменьшим слона до размеров микроба (5000 нм) – тогда блоха у него на спине станет величиной как раз в нанометр. Если бы рост человека вдруг уменьшился до нанометра, мы могли бы играть в футбол отдельными атомами! Толщина листа бумаги казалась бы нам тогда равной… 170 километрам. Конечно, это только фантазии. Таких крошечных человечков и даже насекомых на свете быть не может. Нанометрами измеряются лишь самые примитивные существа – вирусы (их длина в среднем 100 нм). Живая природа заканчивается на рубеже примерно в десять нанометров – такие размеры имеют сложные молекулы белков, строительные блоки живого. Простые молекулы в десятки раз меньше. Величина атомов – несколько ангстрем (один ангстрем равен 0,1 нм). Например, диаметр атома кислорода – 0,14 нм. Здесь проходит нижняя граница наномира, мира наномасштабов – от сотен до единиц нанометров. Именно в наномире идут процессы фундаментальной важности – совершаются химические реакции, выстраивается строгая геометрия кристаллов, структуры белков. С этими процессами и работают нанотехнологи. Нанотехнологии – это способы создания наноразмерных структур, которые придают материалам и устройствам полезные, а иногда просто необыкновенные свойства. Нанотехнология позволяет поместить частицу лекарства в нанокапсулу и точно нацелить ее на пораженную болезнью клетку, не повредив соседние. Фильтр, пронизанный бесчисленными нанометровыми каналами, которые пропускают воду, но слишком тесны для примесей и микробов, - тоже продукт нанотехнологий. В лабораториях нанотехнологов испытываются суперматериалы – волокна из нанотрубок, которые в тысячи раз прочнее стали, покрытия, делающие предмет невидимым. Ну, а не столь фантастические виды нанопродукции уже продаются в магазинах. Слово «нанокосметика» все чаще звучит в рекламных роликах: наночастицы, входящие в состав косметических кремов, удаляют мельчайшие загрязнения с кожи. Известно, что микробы не любят серебро, но оказывается, что в виде наночастиц оно их просто приводит в ужас и обращает в бегство. Ткани с добавками такого серебра набирают популярность у истинных ценителей гигиены – из них даже делают «наноноски». Впрочем, многие из давно привычных вещей тоже невозможны без «нано»: процессор вашего компьютера содержит миллионы наноразмерных транзисторов, над дисплеем тоже, скорее всего, поработали нанотехнологи. «Нано» уже повсюду – военные используют нанотехнологии, медики используют нанотехнологии, даже производители продуктов питания, и те используют нанотехнологии.

2. Почему «нанотехнологии» - это интересно?

Нанотехнологии - это принципиально новые технологии, которые позволят в будущем получать любые макрообъекты (автомобили, рубашки, холодильники, дома) с помощью микроэлементов: малюсеньких роботов... В некотором смысле это звучит как фантастика (например, «выращивание» целого дома из микроэлементов с помощью нанороботов). Но принципиально это возможно, и наука осторожно, шаг за шагом подбирается к реализации столь удивительной мечты. Сборка нанороботами предметов обихода, да ещё за весьма ограниченное время, будет подобна сказочным сюжетам: «поставить за одну ночь дом» (или дворец), приказать скатерти-самобранке устроить пиршество - всё это сможет реализовать наука.

Эффект лотоса. Известно, что лотос действительно обладает необычными физико-химическими свойствами. Благодаря особому строению и очень высокой гидрофобности его листьев и лепестков цветы лотоса остаются удивительно чистыми. Но как ему удается добиться такой сверхгидрофобности. «Эффект Лотоса» был открыт в 1990-е гг. немецким ботаником, профессором Вильгельмом Бартлоттом. Он показал, что лепестки цветка покрыты крошечными шишечками или «наночастицами». Но лист вдобавок как бы намазан воском. Он вырабатывается в железах растения, что делает его совершенно неуязвимым для воды. На основе этого свойства и с помощью современных нанотехнологий были созданы, так называемые, лотосовые покрытия. При нанесении состава на поверхность образуется слой полимера, который преобразует молекулярную матрицу поверхности, при этом создается устойчивая атомная структура и формируется гидрофобная поверхность, обладающая сильными защитными свойствами. Эта поверхность способна противостоять любым воздействиям извне. Лотосовые покрытия незаменимы во многих сферах жизни человека. Создание стекол, с которых стекают мельчайшие капельки воды с растворенными частичками грязи. Создание плащей и другой специальной одежды. Создание самоочищающихся фасадов зданий. Это только единичные примеры использования уникального свойства лотоса.

Полезная пыль. Одним из самых массовых видов нанопродукции являются ультрадисперсные порошки. Измельчение веществ до наночастиц размерами в десятки или сотни нанометров часто придает им новые полезные качества. Дело в том, что такая наночастица состоит всего лишь из нескольких тысяч или миллионов атомов, поэтому все они оказываются близко к поверхности, на границе с внешним миром, и энергично с ним взаимодействуют. Суммарная поверхность частиц в таком нанопорошке становится огромной.

3. Основные этапы в развитии нанотехнологии

Интенсивные исследования в области нанотехнологий, активизировавшиеся на рубеже XX-XXI вв., стали двигателем происходящих ныне кардинальных изменений в промышленном производстве, привели к качественному скачку в развитии методов и средств обработки информации, получения электрической энергии, синтеза новых материалов на основе передовых научных подходов к познанию материи. Еще до наступления «наноэры» люди сталкивались с наноразмерными объектами и протекающими на атомно-молекулярном уровне процессами, использовали их на практике. Например, на наноуровне происходят биохимические реакции между макромолекулами, из которых состоит все живое, катализ в химическом производстве, брожение, идущее при изготовлении вина, сыра, хлеба. Однако так называемая «интуитивная нанотехнология», которая первоначально развивалась стихийно, без надлежащего понимания природы происходящего, не могла быть надежным фундаментом в будущем. Поэтому все большую актуальность приобретают научные изыскания, расширяющие горизонты наномира и направленные на создание принципиально новых продуктов и ноу-хау.

Системные исследования наноразмерных объектов берут свое начало в XIX в., когда в 1856-1857 гг. английский физик Майкл Фарадей впервые изучил свойства коллоидных растворов нанодисперсного золота и тонких пленок на его основе. Интересно отметить пример своеобразного предвидения, сделанного в 1881 г. писателем Николаем Лесковым в повествовании о тульском мастере Левше, сумевшем подковать «аглицкую» блоху «наногвоздями», которые можно было разглядеть только в «мелкоскоп» с увеличением в 5 млн раз, что соответствует возможностям современной высокоразрешающей микроскопии (на это первым обратил внимание российский ученый, специалист в области наноматериаловедения Ростислав Андриевский).

В первой половине ХХ в. зародилась и получила развитие техника исследования нанообъектов. В 1928 г. предложена схема устройства оптического микроскопа ближнего поля. В 1932 г. впервые создан просвечивающий электронный, а в 1938 г. - сканирующий электронный микроскоп. Во второй половине XX в. начала формироваться принципиальная научная и технологическая база для получения и применения наноструктур и наноструктурированных материалов.

В 1972 г. создан оптический микроскоп ближнего поля. В 1981 г. ученые Герд Бинниг и Генрих Рорер, работавшие в то время в филиале IBM в Цюрихе, предложили конструкцию сканирующего туннельного микроскопа. Позже, в 1986 г., за работы по сканирующей туннельной микроскопии они были удостоены Нобелевской премии по физике. В этом же 1986 г. ими был разработан атомно-силовой микроскоп.

В 1974 г. японский ученый Норио Танигучи при обсуждении проблем обработки веществ ввел термин «нанотехнология». В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Позже для характеристики материалов стали употреблять такие слова, как «наноструктурированный», «нанофазный», «нанокомпозиционный» и т.п.

В 1975 г. были теоретически рассмотрены принципиальные возможности существования особых видов наноразмерных объектов - квантовых точек и квантовых проволок.

В 1986 г. американский физик Эрик Дрекслер в своей книге «Машины созидания: пришествие эры нанотехнологии», основываясь на биологических моделях, ввел понятие о молекулярных роботах, а также развил предложенные Фейнманом идеи нанотехнологической стратегии «снизу вверх».

Мощным стимулом для активизации направления стало создание принципиально новых углеродных наноматериалов. Долгое время считалось, что существуют две единственные полиморфные модификации углерода - графит и алмаз. Однако, как оказалось, пределы полиморфных превращений данного элемента этим не ограничиваются, свидетельством чему являются весьма необычные по своей структуре и свойствам фуллерены и углеродные нанотрубки.

В 1997 г. из дифференцированной соматической клетки было впервые клонировано млекопитающее. Все это - яркий пример возможностей нанотехнологий применительно к биологическим объектам.

Другим примером приложения нанотехнологий, но уже к «неживым» предметам, является история разработки идеи квантовых компьютеров. В 1985 г. профессор Оксфордского университета Дэвид Дойч предложил математическую модель квантово-механического варианта машины Тьюринга. В 1994 г. П. Шор (фирма AT&T Bell) показал, что такая машина может получить практическое воплощение.

В частности, она оказалась эффективной в решении задач о разложении на множители больших чисел. В настоящее время алгоритм, предложенный Шором, широко применяется при создании различных типов квантовых компьютеров. В 1998 г. М. Такэути (фирма «Мицубиси Дэнки») провел принципиальные эксперименты по квантовым вычислительным системам с использованием фотонов. В 1999 г. Н. Накамура (фирма NEC) успешно изучил возможности практической работы квантового компьютера.

Нынешний период в развитии нанотехнологий характеризуется активизацией исследований и разработок в данной области, вложением в них существенных инвестиций. Особенно ярко эти тенденции проявляются в ведущих индустриальных странах мира. США в данном направлении занимают лидирующие позиции.

В 2001 г. была утверждена Национальная нанотехнологическая инициатива (ННИ), основная идея которой была сформулирована следующим образом: «Национальная нанотехнологическая инициатива определяет стратегию взаимодействия различных федеральных ведомств США с целью обеспечения приоритетного развития нанотехнологий, которая должна стать основой экономики и национальной безопасности США в первой половине XXI в.».

В 1996-1998 гг., до принятия ННИ, специальный комитет американского Центра оценки мирового состояния технологий осуществлял мониторинг и анализ развития нанотехнологий во всех странах и выпускал для научных, технических и административных специалистов США обзорные информационные бюллетени об основных тенденциях и достижениях. В 1999 г. состоялось заседание Межотраслевой группы по нанонауке, нанотехнике и нанотехнологиям (IWGN), результатом которого стала разработка прогноза исследований на ближайшие 10 лет. В том же году выводы и рекомендации IWGN были поддержаны Национальным советом по науке и технике при президенте США, после чего в 2000 г. было официально объявлено о принятии ННИ.

О большом внимании, которое уделяет мировая научная общественность проблемам развития нанотехнологий, свидетельствует присуждение в 2007 г. Нобелевской премии по физике за открытие и исследование одного из необычных явлений наномира - эффекта гигантского магнетосопротивления (ГМС).

Выделено семь основных направлений:


  1. Наноматериалы – научно-исследовательское направление, связанное с изучением и разработкой объёмных материалов плёнок и волокон, макроскопические свойства которых определяются химическим составом, строением, размерами и взаимным расположением наноразмерных структур. Объемные наноструктурированные материалы могут быть упорядочены в рамках направления по типу (наночастицы, нанопленки, нанопокрытия и др.) и по составу (металлические, органические, полупроводниковые идр.)

  2. Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм и приборов на основе таких устройств.
Данное направление охватывает физические принципы и объекты наноэлектроники, базовые элементывычислительных систем, объекты для квантовых вычислений и телекоммуникаций, а также устройства сверхплотной записи информации, наноэлектронные источники и детекторы.

  1. Нанофотоника – область фотоники, связанная с разработкой архитектур и технологий производства наноструктурированных устройств генерации, усиления, модуляции, передачи и детектирования электромагнитного излучения и приборов на основе таких устройств.
К этому направлению относятся физические основы генерации и поглощения излучения в различных диапозонах, полупроводниковые источники и детекторы электромагнитного излучения, наноструктурированные оптические волокна и устройства на их основе, светодиоды, твердотельные и оптические лазеры, элементы фотоники и коротковолновой нелинейной оптики.

  1. Нанобиотехнологии – целенаправленное использование биологических макромолекул для конструирования наноматериалов и наноустройств.
Нанобиотехнологии охватывают изучение воздействия наноструктур и материалов на биологические процессы и объекты с целью контроля и управления их биологическими или биохимическими свойствами.

  1. Наномедицина – практическое применение нанотехнологий в медицинских целях, включая научные исследования и разработки в области диагностики, контроля, адресной доставки лекарств, а также действия по восстановлению и реконструкции биологических систем человеческого организма с использованием наноструктур и наноустройств.

  2. Наноинструменты (нанодиагностика) – устройства и приборы, предназначенные для манипулирования наноразмерными объектами, измерения, контроля свойств и стандартизации производимых и используемых наноматериалов и наноустройств.

  3. Технологии и специальные устройства для создания и производства наноматериалов и наноустройств – область техники, связанная с разработкой технологий и специального оборудования для производства наноматериалов и наноустройств.
5. Применение нанотехнологий

Медицина

Сегодня можно говорить о появлении нового направления - наномедицины. Конечно, сегодня мы можем лишь выдвигать предположения о том, какими путями будет развиваться наука будущего, и медицинская наука в частности. Некоторые из этих предположений будут более обоснованы, другие менее. Так, можно более или менее уверенно ожидать, что современные методы получат и дальнейшее развитие. Например, микроустройства будут становиться все более миниатюрными и совершенными, а их функции - все более богатыми.

Методы медицинской диагностики постоянно улучшаются с помощью нанотехнологий. Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых. Наноробот – капсула свободно плавает в человеческой крови, сталкиваясь с различными бактериями. Как она работает? Бактерии прилипают к поверхности рбота благодаря протеиновым маркерам. После распознавания бактерии, наноробот формирует ответный код, считываемый обычным лазером. Эта информация помогает врачам проводить экспресс – анализ, не проводя долговременное выращивание культуры. Каждому типу бактерий соответствует свой код. Врач может увидеть эту информацию даже через оптический микроскоп.

Основными областями применения нанотехнологий в медицине являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.

Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях:

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип – небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.